首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The BAG (Bcl-2 associated athanogene) family is a multifunctional group of proteins that perform diverse functions ranging from apoptosis to tumorigenesis. An evolutionarily conserved group, these proteins are distinguished by a common conserved region known as the BAG domain. BAG genes have been found in yeasts, plants, and animals, and are believed to function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in carcinogenesis, HIV infection, and Parkinson’s disease. These proteins are therefore potential therapeutic targets, and their expression in cells may serve as a predictive tool for such diseases. In plants, the Arabidopsis thaliana genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. Three members contain a calmodulin-binding domain possibly reflecting differences between plant and animal programmed cell death. This review summarizes current understanding of BAG proteins in both animals and plants. Received 21 November 2007; received after revision 17 December 2007; accepted 2 January 2008  相似文献   

2.
Myosin I is a non-filamentous, single-headed, actin-binding motor protein and is present in a wide range of species from yeast to man. The role of these class I myosins have been studied extensively in simple eukaryotes, showing their role in diverse processes such as actin cytoskeleton organization, cell motility, and endocytosis. Recently, studies in metazoans have begun to reveal more specialized functions of myosin I. It will be a major challenge in the future to examine the physiological functions of each class I myosin in different cell types of metazoans.  相似文献   

3.
In this review, we detail the current understanding of the extracellular matrix (ECM) of the migratory slug phase of the cellular slime mould,Dictyostelium discoideum. We describe some structural and non-structural molecules which comprise the ECM, and how these molecules reflect both plant and animal ECM systems. We also describe zones of the multicellular slug that are known to make ECM components, including the role of the prestalk cells and the slug epithelium-like layer. Finally, we review the contributions of studies on mutant to our understanding of the ECM ofD. discoideum, and relate this to differentiation and development in more complex eukaryotic systems.  相似文献   

4.
Reticulons (RTNs) are membrane-spanning proteins sharing a typical domain named reticulon homology domain (RHD). RTN genes have been identified in all eukaryotic organisms examined so far, and the corresponding proteins have been found predominantly associated to the endoplasmic reticulum membranes. In animal and yeast, in which knowledge of the protein family is more advanced, RTNs are involved in numerous cellular processes such as apoptosis, cell division and intracellular trafficking. Up to now, a little attention has been paid to their plant counterparts, i.e., RTNLBs. In this review, we summarize the data available for RTNLB proteins and, using the data obtained with animal and yeast models, several functions for RTNLBs in plant cells are proposed and discussed. Received 01 July 2008; received after revision 08 September 2008; accepted 30 September 2008  相似文献   

5.
The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and plasma membrane. Photoaffinity cross-linking of [125I]-azido-RGD heptapeptide in the presence of purified plasma membrane vesicles of Arabidopsis thaliana led to label incorporation into a single protein with an apparent molecular mass of 80 kDa. Incorporation could be prevented by excess RGD peptides, but also by the IPI-O protein, an RGD-containing protein secreted by the oomycete plant pathogen Phytophthora infestans. Hydrophobic cluster analysis revealed that the RGD motif of IPI-O (positions 53–56) is readily accessible for interactions. Single amino acid mutations in the RGD motif in IPI-O (of Asp56 into Glu or Ala) resulted in the loss of protection of the 80-kDa protein from labelling. Thus, the interaction between the two proteins is mediated through RGD recognition and the 80-kDa RGD-binding protein has the characteristics of a receptor for IPI-O. The IPI-O protein also disrupted cell wall-plasma membrane adhesions in plasmolysed A. thaliana cells, whereas IPI-O proteins mutated in the RGD motif (D56A and D56E) did not.Received 23 October 2003; received after revision 5 December 2003; accepted 12 December 2003  相似文献   

6.
Protein-O-mannosyltransferases (Pmt proteins) catalyse the addition of mannose to serine or threonine residues of secretory proteins. This modification was described first for yeast and later for other fungi, mammals, insects and recently also for bacteria. O-mannosylation depends on specific isoforms of the three Pmt1, 2 and 4 subfamilies. In fungi, O-mannosylation determines the structure and integrity of cell walls, as well as cellular differentiation and virulence. O-mannosylation of specific secretory proteins of the human fungal pathogen Candida albicans and of the bacterial pathogen Mycobacterium tuberculosis contributes significantly to virulence. In mammals and insects, Pmt proteins are essential for cellular differentiation and development, while lack of Pmt activity causes Walker-Warburg syndrome (muscular dystrophy) in humans. The susceptibility of human cells to certain viruses may also depend on O-mannosyl chains. This review focuses on the various roles of Pmt proteins in cellular differentiation, development and virulence. Received 6 September 2007; received after revision 3 October 2007; accepted 5 October 2007  相似文献   

7.
Mechanisms mediating the inheritance of mitochondria are poorly understood, but recent studies with the yeastsSaccharomyces cerevisiae andSchizosaccharomyces pombe have begun to identify components that facilitate this essential process. These components have been identified through the analysis of conditional yeast mutants that display aberrant mitochondrial distribution at restrictive conditions. The analysis of these mutants has uncovered several novel proteins that are localized either to cytoskeletal structures or to the mitochondria themselves. Many mitochondrial inheritance mutants also show altered mitochondrial morphology and defects in maintenance of the mitochondrial genome. Although some inheritance components and mechanisms appear to function specifically in certain types of cells, other conserved proteins are likely to mediate mitochondrial behavior in all eukaryotic cells.  相似文献   

8.
The facultative intracellular pathogen Salmonella enterica resides in a special membrane compartment of the host cell and modifies its host to achieve intracellular survival and proliferation. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) has a central role in the interference of intracellular Salmonella with host cell functions. SPI2 function affects antimicrobial defense mechanisms of the host, intracellular transport processes, integrity and function of the cytoskeleton and host cell death. These modifications are mediated by translocation of a large number of effector proteins by the SPI2 system. In this review, we summarize recent work on the cellular phenotypes related to SPI2 function and contribution of SPI2 effector proteins to these manipulations. These studies reveal a complex set of pathogenic interferences between intracellular Salmonella and its host cells.Received 11 June 2004; received after revision 8 July 2004; accepted 12 July 2004  相似文献   

9.
Conclusions Concepts about interferon have changed dramatically over the years. Initially it was considered to be an antiviral protein which selectively inhibited the replication of viruses24. Over the years we have discovered an increasing number of interferons and many different biological activities. Other regulatory proteins have been detected and the interferons have become part of an interacting family of biological response-modifying proteins. Because of the complexity of these systems, animal experiments are the only way to assess the clinical potential of interferons (and interferon-like molecules). It is important that the animal experiments should not be too restricted in scope, because interferon has now proved to have activity in conditions other than viral infections, for example against tumors and infections other than those caused by viruses.  相似文献   

10.
Mammalian galectin-1 (Gal-1), a beta-galactoside-binding lectin has a prominent role in regulating cell adhesion, cell growth and immune responses. Downregulation of these biological functions may occur via internalization of Gal-1. In the present study we have investigated the mechanism and possible mediator(s) of Gal-1 endocytosis. We show that internalization occurs at a temperature higher than 22 degrees C in an energy dependent fashion. After one hour incubation Gal-1 localizes in the Golgi system within the cells, and then disappears without accumulation in degradation compartments, such as lysosomes. Based on their strong intracellular co-localization, two glycoconjugates, GM1 ganglioside and CD7 are implicated in the sorting of internalized Gal-1 into Golgi. Other known Gal-1 binding glycoproteins on T cells (CD2, CD3, CD43 and CD45) do not cointernalize with the lectin. Internalization of Gal-1 depends on its lectin activity and follows dual pathways involving clathrin-coated vesicles and raft-dependent endocytosis.  相似文献   

11.
The 129 mouse strain develops congenital testicular germ cell tumors (TGCTs) at a low frequency. TGCTs in mice resemble the testicular tumors (teratomas) that occur in human infants. The genes that cause these tumors in 129 have not been identified. The defect at the Ter locus increases TGCT incidence such that 94% of 129-Ter/Ter males develop TGCTs. The primary effect of the Ter mutation is progressive loss of primordial germ cells (PGCs) during embryonic development. This results in sterility in adult Ter/Ter mice on all mouse strain backgrounds. However, on the 129 background, Ter causes tumor development in addition to sterility. Therefore, Ter acts as a modifier of 129-derived TGCT susceptibility genes. Ter was identified to be a mutation that inactivates the Dead-end1 (Dnd1) gene. In this perspective, I discuss the possible areas of future investigations to elucidate the mechanism of TGCT development due to Dnd1 inactivation. Received 29 September 2006; received after revision 29 January 2007; accepted 19 February 2007  相似文献   

12.
Delivery of macromolecules into living cells by arginine-rich cell penetrating peptides (AR-CPPs) is an important new avenue for the development of novel therapeutic strategies. However, to date the mechanism of this delivery remains elusive. Recent data implicate endocytosis in the internalization of AR-CPPs and their macromolecular cargo and also indicate limited delivery of macromolecules into the cell cytoplasm and nucleus. Different types of endocytosis – clathrin-dependent endocytosis, raft/caveolin-dependent endocytosis and macropinocytosis – are all implicated in the uptake of AR-CPPs and their cargo into different cells. Cationic AR-CPPs dramatically increase uptake of conjugated molecules through efficient binding to surface proteoglycans. Whether this increase in binding can assure delivery of a sufficient amount of functionally active macromolecules into the cytoplasm and nucleus or whether there is a specific mechanism by which AR-CPPs facilitate the escape of conjugated cargo from endosomes remains to be understood. Received 30 June 2005; received after revision 9 August 2005; accepted 30 August 2005  相似文献   

13.
14.
dng1 is a Dictyostelium homologue of the mammalian tumor suppressor ING gene. DNG1 protein localizes in the nucleus, and has a highly conserved PHD finger domain found in chromatin-remodeling proteins. Both dng1 disruption and overexpression impaired cell proliferation. In dng1-null cells, the progression of differentiation was delayed in a cell-density-dependent manner, and many tiny aggregates were formed. Exogenously applied cAMP pulses reversed the inhibitory effect caused by dng1 disruption on the aggregation during early development, but formation of tiny aggregates was not restored. dng1-overexpressing cells acquired the ability to undergo chemotaxis to cAMP earlier and exhibited enhanced differentiation. These phenotypes were found to be coupled with altered expressions of early genes such as cAMP receptor 1 (car1) and contact site A (csA). Furthermore, disordered histone modifications were demonstrated in dng1-null cells. These results suggest a regulatory role of dng1 in the transition of cells from growth to differentiation.Received 29 December 2004; received after revision 24 May 2005; accepted 26 May 2005  相似文献   

15.
Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.  相似文献   

16.
Summary The shape change ofDrosophila melanogaster blood cells (lamellocytes) from discoidal to bipolar that is caused by a factor from the female parasitoidLeptopilina heterotoma is blocked by the tubulin inhibitors vinblastine and vincristine in vitro. The actin inhibitor, cytochalasin B, causes arborization ofDrosophila lamellocytes and acts synergistically with the wasp factor to alter lamellocyte morphology. Lamellocyte arborization induced by cytochalasin B is blocked by simultaneous treatment with vinblastine. These observations indicate that the changes in lamellocyte shape induced by both the wasp factor and cytochalasin B require microtubule assembly.  相似文献   

17.
18.
Summary Influenza A viruses grown in different animal or human cells retain their antigenic make-up as tested by the usual immunological assays. With the aid of aSambucus nigra (L.) extract containing its lectins the viruses can be distinguished after one single passage in a different cell type by a change in their hemagglutinating properties. Binding of such lectins to influenza viruses may be a means for a more subtle classification, relating to the host cell origin of the virus.  相似文献   

19.
Summary Two new metabolites of an apparent propionate origin have been isolated from the organic extract of the ascoglossan molluscCyerce nigricans. The proposed structures for the new natural products are based on interpretation of their physical and spectral properties. The new compounds isolated lacked the potent ichthyodeterrent properties of the whole animal extract suggesting that other molecules are involved in the defense of this shell-less mollusc.  相似文献   

20.
Proteins of the developing enamel matrix include amelogenin, ameloblastin and enamelin. Of these three proteins amelogenin predominates. Protein-protein interactions are likely to occur at the ameloblast Tomes’ processes between membrane-bound proteins and secreted enamel matrix proteins. Such protein-protein interactions could be associated with cell signaling or endocytosis. CD63 and Lamp1 are ubiquitously expressed, are lysosomal integral membrane proteins, and localize to the plasma membrane. CD63 and Lamp1 interact with amelogenin in vitro. In this study our objective was to study the molecular events of intercellular trafficking of an exogenous source of amelogenin, and related this movement to the spatiotemporal expression of CD63 and Lamp1 using various cell lineages. Exogenously added amelogenin moves rapidly into the cell into established Lamp1-positive vesicles that subsequently localize to the perinuclear region. These data indicate a possible mechanism by which amelogenin, or degraded amelogenin peptides, are removed from the extracellular matrix during enamel formation and maturation. Received 27 September 2006; received after revision 24 November 2006; accepted 5 December 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号