首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
S G Clark  M J Stern  H R Horvitz 《Nature》1992,356(6367):340-344
The induction of the hermaphrodite vulva and the migration of the sex myoblasts in the nematode Caenorhabditis elegans are both controlled by intercellular signalling. The gonadal anchor cell induces formation of the vulva from nearby hypodermal cells, and a set of somatic gonadal cells attract the migrating sex myoblasts to their final positions. Many genes required for vulval induction have been identified, including the let-23 receptor tyrosine kinase gene and the let-60 ras gene. We report here the identification and characterization of a new gene, sem-5 (sem, sex muscle abnormal), that acts both in vulval induction and in sex myoblast migration. On the basis of its DNA sequence, sem-5 encodes a novel 228-amino-acid protein which consists almost entirely of one SH2 (SH, src homology region) and two SH3 domains. SH2 and SH3 domains are present in many signalling proteins regulated by receptor and non-receptor tyrosine kinases. Mutations that impair sem-5 activity alter residues that are highly conserved among different SH2 and SH3 domains. Our results indicate that the sem-5 gene encodes a novel protein that functions in at least two distinct cell-signalling processes.  相似文献   

2.
R J Hill  P W Sternberg 《Nature》1992,358(6386):470-476
The lin-3 gene is necessary for induction of the Caenorhabditis elegans vulva by the anchor cell. It encodes a molecule similar to epidermal growth factor and to transforming growth factor-alpha and acts through the epidermal growth factor receptor homologue let-23. Expression of lin-3 in the anchor cell stimulates vulval induction; lin-3 may encode the vulval inducing signal.  相似文献   

3.
Hirotsu T  Saeki S  Yamamoto M  Iino Y 《Nature》2000,404(6775):289-293
The Ras-MAPK (mitogen-activated protein kinase) signal transduction pathway is well known to control cellular proliferation and differentiation in response to extracellular signals, but its other functions are less understood. In Caenorhabditis elegans this pathway regulates several developmental events, such as vulval induction and progression of meiosis, but its function in the nervous system is unknown. Here we report that the Ras-MAPK pathway is involved in olfaction in this organism. Mutational inactivation and hyperactivation of this pathway impairs efficiency of chemotaxis to a set of odorants. Experiments in which let-60 ras was expressed using a heat-shock promoter and a cell-specific promoter show that a normal activity of LET-60 Ras is required in mature olfactory neurons. Application of the odorant isoamylalcohol to wild-type animals leads to the activation of MAP kinase in olfactory neurons within 10 seconds. This induction is dependent on the function of the nucleotide-gated channel TAX-2/TAX-4 and the voltage-activated calcium channel subunit UNC-2. These results suggest a dynamic regulatory role for the Ras-MAPK pathway in perception and transmission of sensory signals in olfactory neurons.  相似文献   

4.
Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.  相似文献   

5.
Shaye DD  Greenwald I 《Nature》2002,420(6916):686-690
The coordination of signals from different pathways is important for cell fate specification during animal development. Here, we define a novel mode of crosstalk between the epidermal growth factor receptor/Ras/mitogen-activated protein kinase cascade and the LIN-12/Notch pathway during Caenorhabditis elegans vulval development. Six vulval precursor cells (VPCs) are initially equivalent but adopt different fates as a result of an inductive signal mediated by the Ras pathway and a lateral signal mediated by the LIN-12/Notch pathway. One consequence of activating Ras is a reduction of LIN-12 protein in P6.p (ref. 2), the VPC believed to be the source of the lateral signal. Here we identify a 'downregulation targeting signal' (DTS) in the LIN-12 intracellular domain, which encompasses a di-leucine-containing endocytic sorting motif. The DTS seems to be required for internalization of LIN-12, and on Ras activation it might mediate altered endocytic routing of LIN-12, leading to downregulation. We also show that if LIN-12 is stabilized in P6.p, lateral signalling is compromised, indicating that LIN-12 downregulation is important in the appropriate specification of cell fates in vivo.  相似文献   

6.
C Ellis  M Moran  F McCormick  T Pawson 《Nature》1990,343(6256):377-381
The critical pathways through which protein-tyrosine kinases induce cellular proliferation and malignant transformation are not well defined. As microinjection of antibodies against p21ras can block the biological effects of both normal and oncogenic tyrosine kinases, it is likely that they require functional p21ras to transmit their mitogenic signals. No biochemical link has been established, however, between tyrosine kinases and p21ras. We have identified a non-catalytic domain of cytoplasmic tyrosine kinases, SH2, that regulates the activity and specificity of the kinase domain. The presence of two adjacent SH2 domains in the p21ras GTPase-activating protein (GAP) indicates that GAP might interact directly with tyrosine kinases. Here we show that GAP, and two co-precipitating proteins of relative molecular masses 62,000 and 190,000 (p62 and p190) are phosphorylated on tyrosine in cells that have been transformed by cytoplasmic and receptor-like tyrosine kinases. The phosphorylation of these polypeptides correlates with transformation in cells expressing inducible forms of the v-src or v-fps encoded tyrosine kinases. Furthermore, GAP, p62 and p190 are also rapidly phosphorylated on tyrosine in fibroblasts stimulated with epidermal growth factor. Our results suggest a mechanism by which tyrosine kinases might modify p21ras function, and implicate GAP and its associated proteins as targets of both oncoproteins and normal growth factor receptors with tyrosine kinase activity. These data support the idea that SH2 sequences direct the interactions of cytoplasmic proteins involved in signal transduction.  相似文献   

7.
Requirement for c-ras proteins during viral oncogene transformation   总被引:131,自引:0,他引:131  
M R Smith  S J DeGudicibus  D W Stacey 《Nature》1986,320(6062):540-543
Many retroviral oncogenes have been classified into one of several categories based on structure, enzymology and cellular localization. These genes originated from host cells and are probably derived from genes normally involved in the control of cell proliferation. The cellular counterparts of three oncogenes have been identified as a growth factor or growth factor receptor; related oncogenes include receptor-like membrane proteins which often express tyrosine kinase activity. These growth factor-related oncogenes are structurally and biochemically distinct from the membrane-associated ras gene family, which bind and hydrolyse GTP. Oncogenes localized primarily in the cytoplasm which probably have serine kinase activity, have also been identified. Although the structure and biochemistry of many oncogenes have been extensively studied, relatively little is known about the functional relationships of oncogene proteins within the cell. An opportunity to study such interaction is provided by the identification of a monoclonal antibody that neutralizes cellular ras proteins when microinjected into cells. It has been shown previously that the injected antibody inhibits the initiation of S-phase in NIH 3T3 cells. In the present study we injected this monoclonal antibody into NIH 3T3 cells transformed by a variety of oncogenes. The results show that transformation by three growth factor receptor-like oncogenes depends on c-ras proteins, while transformation by two cytoplasmic oncogenes appears to be independent of c-ras protein.  相似文献   

8.
9.
10.
D R Kaplan  D Martin-Zanca  L F Parada 《Nature》1991,350(6314):158-160
Nerve growth factor (NGF) is a neurotrophic factor responsible for the differentiation and survival of sympathetic and sensory neurons as well as selective populations of cholinergic neurons. NGF binds to specific cell-surface receptors but the mechanism for transduction of the neurotrophic signal is unknown. Several experiments using the NGF-responsive pheochromocytoma cell line, PC12, have implicated tyrosine phosphorylation in NGF-mediated responses, although no NGF-specific tyrosine kinases have been identified. Here we show that NGF induces tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product, a tyrosine kinase receptor whose expression is restricted in vivo to neurons of the sensory spinal and cranial ganglia of neural crest origin. Tyrosine phosphorylation of trk by NGF is rapid, specific and occurs with picomolar quantities of factor, indicating that the response is mediated by physiological amounts of NGF. Activation of the trk tyrosine kinase receptor provides a possible mechanism for signal transduction by NGF.  相似文献   

11.
T Hunter  N Ling  J A Cooper 《Nature》1984,311(5985):480-483
The receptor for epidermal growth factor (EGF) is a 170,000-180,000 molecular weight single-chain glycoprotein of 1,186 amino acids. Its sequence suggests that it has an external EGF-binding domain, formed by the NH2-terminal 621 amino acids, linked to a cytoplasmic region by a single membrane-spanning segment. In the cytoplasmic portion, starting 50 residues from the membrane, there is a 250-residue stretch similar to the catalytic domain of the src gene family of retroviral tyrosine protein kinases, and, indeed, a tyrosine-specific protein kinase activity intrinsic to the receptor is stimulated when EGF is bound. Increased tyrosine phosphorylation of cellular proteins, detected in A431 cells following EGF binding, may be important in the mitogenic signal pathway. Tumour promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), counteract this increase, as well as causing loss of a high affinity class of EGF binding sites. The major receptor for TPA has been identified as the serine/threonine-specific Ca2+/phospholipid-dependent diacylglycerol-activated protein kinase, protein kinase C. By substituting for diacylglycerol, TPA stimulates protein kinase C. Protein kinase C phosphorylates purified EGF receptor at specific sites, and this reduces EGF-stimulated tyrosine protein kinase activity. TPA treatment of A431 cells increases serine and threonine phosphorylation of the EGF receptor at the same sites, which suggests that the reduction of EGF receptor kinase activity in TPA-treated cells is a consequence of the receptor's phosphorylation by the kinase. We have attempted to identify these phosphorylation sites and show here that protein kinase C phosphorylates threonine 654 in the human EGF receptor. This threonine is in a very basic sequence nine residues from the cytoplasmic face of the plasma membrane in the region before the protein kinase domain; it is thus in a position to modulate signalling between this internal domain and the external EGF-binding domain.  相似文献   

12.
L Varticovski  B Druker  D Morrison  L Cantley  T Roberts 《Nature》1989,342(6250):699-702
Colony stimulating factor-1 (CSF-1) is a lineage-specific growth factor required for proliferation and survival of mononuclear phagocytes and their precursors. The CSF-1 receptor belongs to a family of ligand-activated protein-tyrosine kinases. Activation of the platelet-derived growth factor receptor, but not the CSF-1 receptor, leads to an increase in phospholipase C activity and a subsequent elevation in intracellular calcium. Recent studies have shown that a novel phosphoinositol (PtdIns) kinase, termed PtdIns-3 kinase, is stimulated by the platelet-derived growth factor receptor and certain oncogenes in the protein-tyrosine kinase family. PtdIns-3 kinase phosphorylates the D-3 hydroxyl position of the inositol ring of PtdIns, and its products do not participate in the generation of the second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Here we report that addition of CSF-1 is followed by activation of PtdIns-3 kinase in a macrophage cell line (P388 D1), which contains CSF-1 receptors, and in BALB/c fibroblasts made to express the human CSF-1 receptor. Furthermore, we show that activation of the CSF-1 receptor results in the accumulation in intact cells of polyphosphoinositides phosphorylated at the D-3 position of the inositol ring. Thus activation of the CSF-1 receptor stimulates PtdIns-3 kinase activity, indicating a novel pathway for CSF-1 receptor-mediated signal transduction.  相似文献   

13.
Stimulation of certain receptor tyrosine kinases results in the tyrosine phosphorylation and activation of phospholipase C gamma (PLC gamma), an enzyme that catalyses the hydrolysis of phosphatidylinositol (PtdIns). This hydrolysis generates diacylglycerol and free inositol phosphate, which in turn activate protein kinase C and increase intracellular Ca2+, respectively. PLC gamma physically associates with activated receptor tyrosine kinases, suggesting that it is a substrate for direct phosphorylation by these kinases. Here we report that a fibroblast growth factor (FGF) receptor with a single point mutation at residue 766 replacing tyrosine with phenylalanine fails to associate with PLC gamma in response to FGF. This mutant receptor also failed to mediate PtdIns hydrolysis and Ca2+ mobilization after FGF stimulation. However, the mutant receptor phosphorylated itself and several other cellular proteins, and it mediated mitogenesis in response to FGF. These findings show that a point mutation in the FGF receptor selectively eliminates activation of PLC gamma and that neither Ca2+ mobilization nor PtdIns hydrolysis are required for FGF-induced mitogenesis.  相似文献   

14.
Sergina NV  Rausch M  Wang D  Blair J  Hann B  Shokat KM  Moasser MM 《Nature》2007,445(7126):437-441
Oncogenic tyrosine kinases have proved to be promising targets for the development of highly effective anticancer drugs. However, tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (HER) family show only limited activity against HER2-driven breast cancers, despite effective inhibition of epidermal growth factor receptor (EGFR) and HER2 in vivo. The reasons for this are unclear. Signalling in trans is a key feature of this multimember family and the critically important phosphatidylinositol-3-OH kinase (PI(3)K)/Akt pathway is driven predominantly through transphosphorylation of the kinase-inactive HER3 (refs 9, 10). Here we show that HER3 and consequently PI(3)K/Akt signalling evade inhibition by current HER-family TKIs in vitro and in tumours in vivo. This is due to a compensatory shift in the HER3 phosphorylation-dephosphorylation equilibrium, driven by increased membrane HER3 expression driving the phosphorylation reaction and by reduced HER3 phosphatase activity impeding the dephosphorylation reaction. These compensatory changes are driven by Akt-mediated negative-feedback signalling. Although HER3 is not a direct target of TKIs, HER3 substrate resistance undermines their efficacy and has thus far gone undetected. The experimental abrogation of HER3 resistance by small interfering RNA knockdown restores potent pro-apoptotic activity to otherwise cytostatic HER TKIs, re-affirming the oncogene-addicted nature of HER2-driven tumours and the therapeutic promise of this oncoprotein target. However, because HER3 signalling is buffered against an incomplete inhibition of HER2 kinase, much more potent TKIs or combination strategies are required to silence oncogenic HER2 signalling effectively. The biologic marker with which to assess the efficacy of HER TKIs should be the transphosphorylation of HER3 rather than autophosphorylation.  相似文献   

15.
16.
The mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region. These shc gene products (Shc) are transforming when overexpressed in fibroblasts. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated Shc proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC12 cells. These results suggest that Shc tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.  相似文献   

17.
PDGF induction of tyrosine phosphorylation of GTPase activating protein   总被引:107,自引:0,他引:107  
The cascade of biochemical events triggered by growth factors and their receptors is central to understanding normal cell-growth regulation and its subversion in cancer. Ras proteins (p21ras) have been implicated in signal transduction pathways used by several growth factors, including platelet-derived growth factor (PDGF). These guanine nucleotide-binding Ras proteins specifically interact with a cellular GTPase-activating protein (GAP). Here we report that in intact quiescent fibroblasts, both AA and BB homodimers of PDGF rapidly induce tyrosine phosphorylation of GAP under conditions in which insulin and basic fibroblast growth factor (bFGF) are ineffective. Although GAP is located predominantly in the cytosol, most tyrosine-phosphorylated GAP is associated with the cell membrane, the site of p21ras biological activity. These results provide a direct biochemical link between activated PDGF-receptor tyrosine kinases and the p21ras-GAP mitogenic signalling system.  相似文献   

18.
J C Lacal  J Moscat  S A Aaronson 《Nature》1987,330(6145):269-272
Genes involved in the transduction of signals required for normal cell proliferation commonly appear to be subverted in the neoplastic process. One such group is the highly conserved family of ras genes, which have been detected as transforming genes in a wide variety of naturally occurring tumours. By analogy with other known G proteins, the p21 proteins encoded by ras genes may act as regulatory proteins in the transduction of signals that lead to DNA synthesis. A major pathway involved in the DNA synthesis induced by growth factors is mediated by phosphatidylinositol turnover: cleavage of phosphoinositides by phospholipase C produces 1,2-diacylglycerol, and inositol phosphates. The former acts as an essential cofactor for protein kinase C (ref. 4), and inositol-(1,4,5)-triphosphate mobilizes Ca2+ from non-mitochondrial intracellular stores. We demonstrate a reproducible increase in 1,2-diacylglycerol, in the absence of a detectable increase in inositol phosphates, in transformed cells containing Ha-ras oncogenes and with different membrane targeting signals for the ras p21 protein. These findings suggest that a source other than phosphoinositides exists for the generation of 1,2-diacylglycerol and that the Ha-ras oncogene specifically activates this novel pathway for 1,2-diacylglycerol production.  相似文献   

19.
Testis determination requires insulin receptor family function in mice   总被引:1,自引:0,他引:1  
In mice, gonads are formed shortly before embryonic day 10.5 by the thickening of the mesonephros and consist of somatic cells and migratory primordial germ cells. The male sex-determining process is set in motion by the sex-determining region of the Y chromosome (Sry), which triggers differentiation of the Sertoli cell lineage. In turn, Sertoli cells function as organizing centres and direct differentiation of the testis. In the absence of Sry expression, neither XX nor XY gonads develop testes, and alterations in Sry expression are often associated with abnormal sexual differentiation. The molecular signalling mechanisms by which Sry specifies the male pathway and models the undifferentiated gonad are unknown. Here we show that the insulin receptor tyrosine kinase family, comprising Ir, Igf1r and Irr, is required for the appearance of male gonads and thus for male sexual differentiation. XY mice that are mutant for all three receptors develop ovaries and show a completely female phenotype. Reduced expression of both Sry and the early testis-specific marker Sox9 indicates that the insulin signalling pathway is required for male sex determination.  相似文献   

20.
EGFR信号转导机制及靶向治疗   总被引:1,自引:0,他引:1  
综述了EGFR基本结构特征及其介导细胞信号转导的机制,论述了基于EGFR靶向治疗的机理及研究现状。指出,EGFR是最早被发现并研究的RTK家族成员,其蛋白结构分成胞外域、跨膜区与胞内域三部分。EGFR介导细胞信号转导的核心机制是配体EGF与EGFR胞外域结合,通过变构作用与二聚化作用,使胞内域通过反式激活完成对受体末端酪氨酸残基的磷酸化,进而招募下游信号因子完成细胞信号转导过程。质膜结构与组成、EGFR跨膜区的组成及胞外域的有无、EGFR的内吞及泛素依赖性降解过程都调控EGFR细胞信号转导过程。阻断EGFR信号通路可抑制表皮肿瘤细胞成长。EGFR已经成为表皮肿瘤治疗的重要靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号