首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Dumuis  J P Pin  K Oomagari  M Sebben  J Bockaert 《Nature》1990,347(6289):182-184
Associative stimulation of N-methyl-D-aspartate (NMDA) receptors and quisqualate ionotropic receptors (Qi) induces long-term potentiation at particular glutamatergic synapses. Release of arachidonic acid as a result of stimulation of NMDA receptors has been proposed to play a part in the establishment of long-term potentiation. But long-term plasticity events at some other glutamatergic synapses do not involve activation of NMDA receptors. Here we report that in mature striatal neurons in primary cultures, quisqualate can release arachidonic acid by associatively activating both quisqualate metabotropic receptors coupled to phospholipase C (Qp) and Qi receptors. Independent activation of these two receptor types with specific agonists did not stimulate arachidonic acid release. These results support a role for the associative activation of Qp and Qi receptors in synaptic plasticity events, including long-term potentiation at particular synapses.  相似文献   

2.
NMDA application potentiates synaptic transmission in the hippocampus   总被引:13,自引:0,他引:13  
J A Kauer  R C Malenka  R A Nicoll 《Nature》1988,334(6179):250-252
The NMDA (N-methyl-D-aspartate) class of glutamate receptor plays a critical role in a variety of forms of synaptic plasticity in the vertebrate central nervous system. One extensively studied example of plasticity is long-term potentiation (LTP), a remarkably long-lasting enhancement of synaptic efficiency induced in the hippocampus by brief, high-frequency stimulation of excitatory synapses. LTP is a strong candidate for a cellular mechanism of learning and memory. The site of LTP induction appears to be the postsynaptic cell and induction requires both activation of NMDA receptors by synaptically released glutamate and depolarization of the postsynaptic membrane. It is proposed that this depolarization relieves a voltage-dependent Mg2+ block of the NMDA receptor channel, resulting in increased calcium influx which is the trigger for the induction of LTP. This model predicts that application of a large depolarizing dose of NMDA should be sufficient to evoke LTP. In agreement with a previous study, we have found that NMDA or glutamate application does potentiate synaptic transmission in the hippocampus. This agonist-induced potentiation is, however, decremental and short-lived, unlike LTP. It is occluded shortly after the induction of LTP and a similar short-term potentiation can be evoked by synaptically released glutamate. We thus propose that LTP has two components, a short-term, decremental component which can be mimicked by NMDA receptor activation, and a long-lasting, non-decremental component which, in addition to requiring activation of NMDA receptors, requires stimulation of presynaptic afferents.  相似文献   

3.
B Barbour  M Szatkowski  N Ingledew  D Attwell 《Nature》1989,342(6252):918-920
Activation of NMDA (N-methyl-D-aspartate) receptors by neurotransmitter glutamate stimulates phospholipase A2 to release arachidonic acid. This second messenger facilitates long-term potentiation of glutamatergic synapses in the hippocampus, possibly by blocking glutamate uptake. We have studied the effect of arachidonic acid on glutamate uptake into glial cells using the whole-cell patch-clamp technique to monitor the uptake electrically. Micromolar levels of arachidonic acid inhibit glutamate uptake, mainly by reducing the maximum uptake rate with only small effects on the affinity for external glutamate and sodium. On removal of arachidonic acid a rapid (5 minutes) phase of partial recovery is followed by a maintained suppression of uptake lasting at least 20 minutes. Surprisingly, the action of arachidonic acid is unaffected by cyclo-oxygenase or lipoxygenase inhibitors suggesting that it inhibits uptake directly, possibly by increasing membrane fluidity. As blockade of phospholipase A2 prevents the induction of long-term potentiation (LTP), inhibition of glutamate uptake by arachidonic acid may contribute to the increase of synaptic gain that occurs in LTP. During anoxia, release of arachidonic acid could severely compromise glutamate uptake and thus contribute to neuronal death.  相似文献   

4.
A Dumuis  M Sebben  L Haynes  J P Pin  J Bockaert 《Nature》1988,336(6194):68-70
Receptors for excitatory amino-acid transmitters on nerve cells fall into two main categories associated with non-selective cationic channels, the NMDA (N-methyl-D-aspartate) and non-NMDA (kainate and quisqualate) receptors. Special properties of NMDA receptors such as their voltage-dependent blockade by Mg2+ (refs 3, 4) and their permeability to Na+, K+ as well as to Ca2+ (refs 5, 6), have led to the suggestion that these receptors are important in plasticity during development and learning. They have been implicated in long-term potentiation (LTP), a model for the study of the cellular mechanisms of learning. We report here that glutamate and NMDA, acting at typical NMDA receptors, stimulate the release of arachidonic acid (as well as 11- and 12-hydroxyeicosatetraenoic acids from striatal neurons probably by stimulation of a Ca2+-dependent phospholipase A2. Kainate and quisqualate, as well as K+-induced depolarization were ineffective. Our results provide direct evidence in favour of the hypothesis, that arachidonic acid derivatives, produced by activation of the postsynaptic cell, could be messengers that cross the synaptic cleft to modify the presynaptic functions known to be altered during LTP. In addition, we suggest that NMDA receptors are the postsynaptic receptors which trigger the synthesis of these putative transynaptic messengers.  相似文献   

5.
D Kim  D L Lewis  L Graziadei  E J Neer  D Bar-Sagi  D E Clapham 《Nature》1989,337(6207):557-560
Muscarinic receptors of cardiac pacemaker and atrial cells are linked to a potassium channel (IK.ACh) by a pertussis toxin-sensitive GTP-binding protein. The dissociation of G-proteins leads to the generation of two potential transducing elements, alpha-GTP and beta gamma. IK.ACh is activated by G-protein alpha- and beta gamma-subunits applied to the intracellular surface of inside-out patches of membrane. beta gamma has been shown to activate the membrane-bound enzyme phospholipase A2 in retinal rods. Arachidonic acid, which is produced from the action of phospholipase A2 on phospholipids, is metabolized to compounds which may act as second messengers regulating ion channels in Aplysia. Muscarinic receptor activation leads to the generation of arachidonic acid in some cell lines. We therefore tested the hypothesis that beta gamma activates IK.ACh by stimulation of phospholipase A2. When patches were first incubated with antibody that blocks phospholipase A2 activity, or with the lipoxygenase inhibitor, nordihydroguaiaretic acid, beta gamma failed to activate IK.ACh. Arachidonic acid and several of its metabolites derived from the 5-lipoxygenase pathway, activated the channel. Blockade of the cyclooxygenase pathway did not inhibit arachidonic acid-induced channel activation. We conclude that the beta gamma-subunit of G-proteins activates IK.ACh by stimulating the production of lipoxygenase-derived second messengers.  相似文献   

6.
Glutamate is important in several forms of synaptic plasticity such as long-term potentiation, and in neuronal cell degeneration. Glutamate activates several types of receptors, including a metabotropic receptor that is sensitive to trans-1-amino-cyclopenthyl-1,3-dicarboxylate, coupled to G protein(s) and linked to inositol phospholipid metabolism. The activation of the metabotropic receptor in neurons generates inositol 1,4,5-trisphosphate, which causes the release of Ca2+ from intracellular stores and diacylglycerol, which activates protein kinase C. In nerve terminals, the activation of presynaptic protein kinase C with phorbol esters enhances glutamate release. But the presynaptic receptor involved in this protein kinase C-mediated increase in the release of glutamate has not yet been identified. Here we demonstrate the presence of a presynaptic glutamate receptor of the metabotropic type that mediates an enhancement of glutamate exocytosis in cerebrocortical nerve terminals. Interestingly, this potentiation of glutamate release is observed only in the presence of arachidonic acid, which may reflect that this positive feedback control of glutamate exocytosis operates in concert with other pre- or post-synaptic events of the glutamatergic neurotransmission that generate arachidonic acid. This presynaptic glutamate receptor may have a physiological role in the maintenance of long-term potentiation where there is an increase in glutamate release mediated by postsynaptically generated arachidonic acid.  相似文献   

7.
J H Williams  M L Errington  M A Lynch  T V Bliss 《Nature》1989,341(6244):739-742
Long-term potentiation (LTP) is a widely studied model of the synaptic basis of information storage in the mammalian brain. The induction of LTP is triggered by the postsynaptic entry of calcium through the channel associated with the N-methyl-D-aspartate (NMDA) receptor, whereas its maintenance is mediated, at least in part, by presynaptic mechanisms. To explain how postsynaptic events can lead to an increase in transmitter release, we have postulated the existence of a retrograde messenger to carry information from the postsynaptic side of the synapse to recently active presynaptic terminals. Candidates for a retrograde messenger include arachidonic acid or one of its lipoxygenase metabolites. Here we report that weak activation of the perforant path, when given in the presence of arachidonic acid, leads to a slow-onset persistent increase in synaptic efficacy both in vivo and in vitro. The activity-dependent potentiation thus produced is accompanied by an increase in the release of glutamate, and is non-additive with tetanus-induced LTP. These observations indicate a role for arachidonic acid as a retrograde messenger in the later, but not the initial, stages of LTP.  相似文献   

8.
C E Jahr  C F Stevens 《Nature》1987,325(6104):522-525
There is considerable evidence that glutamate is the principal neurotransmitter that mediates fast excitatory synaptic transmission in the vertebrate central nervous system. This single transmitter seems to activate two or three distinct types of receptors, defined by their affinities for three selective structural analogues of glutamate, NMDA (N-methyl-D-aspartate), quisqualate and kainate. All these agonists increase membrane permeability to monovalent cations, but NMDA also activates a conductance that permits significant calcium influx and is blocked in a voltage-dependent manner by extracellular magnesium. Fast synaptic excitation seems to be mediated mainly by kainate/quisqualate receptors, although NMDA receptors are sometimes activated. We have investigated the properties of these conductances using single-channel recording in primary cultures of hippocampal neurons, because the hippocampus contains all subtypes of glutamate receptors and because long-term potentiation of synaptic transmission occurs in this structure. We find that four or more distinct single-channel currents are evoked by applying glutamate to each outside-out membrane patch. These conductances vary in their ionic permeability and in the agonist most effective in causing them to open. Clear transitions between all the conductance levels are observed. Our observations are compatible with the model that all the single channel conductances activated by glutamate reflect the operation of one or two complex molecular entities.  相似文献   

9.
L Chen  L Y Huang 《Nature》1992,356(6369):521-523
The roles of N-methyl-D-aspartate (NMDA) receptors and protein kinase C (PKC) are critical in generating and maintaining a variety of sustained neuronal responses. In the nociceptive (pain-sensing) system, tissue injury or repetitive stimulation of small-diameter afferent fibres triggers a dramatic increase in discharge (wind-up) or prolonged depolarization of spinal cord neurons. This central sensitization can neither be induced nor maintained when NMDA receptor channels are blocked. In the trigeminal subnucleus caudalis (a centre for processing nociceptive information from the orofacial areas), a mu-opioid receptor agonist causes a sustained increase in NMDA-activated currents by activating intracellular PKC. There is also evidence that PKC enhances NMDA-receptor-mediated glutamate responses and regulates long-term potentiation of synaptic transmission. Despite the importance of NMDA-receptors and PKC, the mechanism by which PKC alters the NMDA response has remained unclear. Here we examine the actions of intracellularly applied PKC on NMDA-activated currents in isolated trigeminal neurons. We find that PKC potentiates the NMDA response by increasing the probability of channel openings and by reducing the voltage-dependent Mg2+ block of NMDA-receptor channels.  相似文献   

10.
W G Regehr  D W Tank 《Nature》1990,345(6278):807-810
In the CA1 hippocampal region, intracellular calcium is a putative second messenger for the induction of long-term potentiation (LTP), a persistent increase of synaptic transmission produced by high frequency afferent fibre stimulation. Because LTP in this region is blocked by the NMDA (N-methyl-D-aspartate) receptor antagonist AP5 (DL-2-amino-5-phosphonovaleric acid) and the calcium permeability of NMDA receptors is controlled by a voltage-dependent magnesium block, a model has emerged that suggests that the calcium permeability of NMDA receptor-coupled ion channels is the biophysical basis for LTP induction. We have performed microfluorometric measurements in individual CA1 pyramidal cells during stimulus trains that induce LTP. In addition to a widespread component of postsynaptic calcium accumulation previously described, we now report that brief high frequency stimulus trains produce a transient component spatially localized to dendritic areas near activated afferents. This localized component is blocked by the NMDA receptor antagonist AP5. The results directly confirm the calcium rise predicted by NMDA receptor models of LTP induction.  相似文献   

11.
R A Lester  J D Clements  G L Westbrook  C E Jahr 《Nature》1990,346(6284):565-567
Synaptic release of glutamate results in a two component excitatory postsynaptic current (e.p.s.c.) at many vertebrate central synapses. Non-N-methyl-D-aspartate receptors mediate a component that has a rapid onset and decay while the component mediated by N-methyl-D-aspartate (NMDA) receptors has a slow rise-time and a decay of several hundred milliseconds, 100 times longer than the mean open time of NMDA channels. The slow decay of the NMDA-mediated e.p.s.c. could be due to residual glutamate in the synaptic cleft resulting in repeated binding and activation of NMDA receptors. However, in cultured hippocampal neurons, we find that the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate has no effect on the slow e.p.s.c. when rapidly applied after activation of the synapse, suggesting that rebinding of glutamate does not occur. In addition, a brief pulse of glutamate to an outside-out membrane patch results in openings of NMDA channels that persist for hundreds of milliseconds, indicating that glutamate can remain bound for this period. These results imply that a brief pulse of glutamate in the synaptic cleft is sufficient to account for the slow e.p.s.c.  相似文献   

12.
S G Cull-Candy  M M Usowicz 《Nature》1987,325(6104):525-528
In the mammalian central nervous system amino acids such as L-glutamate and L-aspartate are thought to act as fast synaptic transmitters. It has been suggested that at least three pharmacologically-distinguishable types of glutamate receptor occur in central neurons and that these are selectively activated by the glutamate analogues N-methyl-D-aspartate (NMDA), quisqualate and kainate. These three receptor types would be expected to open ion channels with different conductances. Hence if agonists produce similar channel conductances this would suggest they are acting on the same receptor. Another possibility is suggested by experiments on spinal neurons, where GABA (gamma-amino butyric acid) and glycine appear to open different sub-conductance levels of one class of channel while acting on different receptors. By analogy, several types of glutamate receptor could also be linked to a single type of channel with several sub-conductance states. We have examined these possibilities in cerebellar neurons by analysing the single-channel currents activated by L-glutamate, L-aspartate, NMDA, quisqualate and kainate in excised membrane patches. All of these agonists are capable of opening channels with at least five different conductance levels, the largest being about 45-50 pS. NMDA predominantly activated conductance levels above 30 pS while quisqualate and kainate mainly activated ones below 20 pS. The presence of clear transitions between levels favours the idea that the five main levels are all sub-states of the same type of channel.  相似文献   

13.
Nugent FS  Penick EC  Kauer JA 《Nature》2007,446(7139):1086-1090
Excitatory brain synapses are strengthened or weakened in response to specific patterns of synaptic activation, and these changes in synaptic strength are thought to underlie persistent pathologies such as drug addiction, as well as learning. In contrast, there are few examples of synaptic plasticity of inhibitory GABA (gamma-aminobutyric acid)-releasing synapses. Here we report long-term potentiation of GABA(A)-mediated synaptic transmission (LTP(GABA)) onto dopamine neurons of the rat brain ventral tegmental area, a region required for the development of drug addiction. This novel form of LTP is heterosynaptic, requiring postsynaptic NMDA (N-methyl-d-aspartate) receptor activation at glutamate synapses, but resulting from increased GABA release at neighbouring inhibitory nerve terminals. NMDA receptor activation produces nitric oxide, a retrograde signal released from the postsynaptic dopamine neuron. Nitric oxide initiates LTP(GABA) by activating guanylate cyclase in GABA-releasing nerve terminals. Exposure to morphine both in vitro and in vivo prevents LTP(GABA). Whereas brief treatment with morphine in vitro blocks LTP(GABA) by inhibiting presynaptic glutamate release, in vivo exposure to morphine persistently interrupts signalling from nitric oxide to guanylate cyclase. These neuroadaptations to opioid drugs might contribute to early stages of addiction, and may potentially be exploited therapeutically using drugs targeting GABA(A) receptors.  相似文献   

14.
J M Bekkers  C F Stevens 《Nature》1989,341(6239):230-233
A CENTRAL assumption about long-term potentiation in the hippocampus is that the two classes of glutamate-receptor ion channel, the N-methyl-D-aspartate (NMDA) and the kainate/quisqualate (non-NMDA) subtypes, are co-localized at individual excitatory synapses. This assumption is important because of the perceived interplay between NMDA and non-NMDA receptors in the induction and expression of long-term potentiation: the NMDA class, by virtue of its voltage-dependent channel block by magnesium and calcium permeability, provides the trigger for the induction of long-term potentiation, whereas the actual enhancement of synaptic efficacy is thought to be provided by the non-NMDA class. If both receptor subtypes are present at the one synapse, such cross-modulation could occur rapidly and locally through diffusible factors. By measuring miniature synaptic currents in cultured hippocampal neurons we show that the majority (approximately 70%) of the excitatory synapses on a postsynaptic cell possess both kinds of receptor, although to different extents. Of the remaining excitatory synapses, approximately 20% contain only the non-NMDA subtype and the rest possess only NMDA receptors. This finding provides direct evidence for co-localization of glutamate-receptor subtypes at individual synapses, and also points to the possibility that long-term potentiation might be differentially expressed at each synapse according to the mix of receptor subtypes at that synapse.  相似文献   

15.
Kainate receptors are involved in synaptic plasticity   总被引:21,自引:0,他引:21  
The ability of synapses to modify their synaptic strength in response to activity is a fundamental property of the nervous system and may be an essential component of learning and memory. There are three classes of ionotropic glutamate receptor, namely NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid) and kainate receptors; critical roles in synaptic plasticity have been identified for two of these. Thus, at many synapses in the brain, transient activation of NMDA receptors leads to a persistent modification in the strength of synaptic transmission mediated by AMPA receptors. Here, to determine whether kainate receptors are involved in synaptic plasticity, we have used a new antagonist, LY382884 ((3S, 4aR, 6S, 8aR)-6-((4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydro isoquinoline-3-carboxylic acid), which antagonizes kainate receptors at concentrations that do not affect AMPA or NMDA receptors. We find that LY382884 is a selective antagonist at neuronal kainate receptors containing the GluR5 subunit. It has no effect on long-term potentiation (LTP) that is dependent on NMDA receptors but prevents the induction of mossy fibre LTP, which is independent of NMDA receptors. Thus, kainate receptors can act as the induction trigger for long-term changes in synaptic transmission.  相似文献   

16.
Interaction with the NMDA receptor locks CaMKII in an active conformation.   总被引:29,自引:0,他引:29  
Calcium- and calmodulin-dependent protein kinase II (CaMKII) and glutamate receptors are integrally involved in forms of synaptic plasticity that may underlie learning and memory. In the simplest model for long-term potentiation, CaMKII is activated by Ca2+ influx through NMDA (N-methyl-D-aspartate) receptors and then potentiates synaptic efficacy by inducing synaptic insertion and increased single-channel conductance of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors. Here we show that regulated CaMKII interaction with two sites on the NMDA receptor subunit NR2B provides a mechanism for the glutamate-induced translocation of the kinase to the synapse in hippocampal neurons. This interaction can lead to additional forms of potentiation by: facilitated CaMKII response to synaptic Ca2+; suppression of inhibitory autophosphorylation of CaMKII; and, most notably, direct generation of sustained Ca2+/calmodulin (CaM)-independent (autonomous) kinase activity by a mechanism that is independent of the phosphorylation state. Furthermore, the interaction leads to trapping of CaM that may reduce down-regulation of NMDA receptor activity. CaMKII-NR2B interaction may be prototypical for direct activation of a kinase by its targeting protein.  相似文献   

17.
Neurotransmission at most excitatory synapses in the brain operates through two types of glutamate receptor termed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors; these mediate the fast and slow components of excitatory postsynaptic potentials respectively. Activation of NMDA receptors can also lead to a long-lasting modification in synaptic efficiency at glutamatergic synapses; this is exemplified in the CA1 region of the hippocampus, where NMDA receptors mediate the induction of long-term potentiation (LTP). It is believed that in this region LTP is maintained by a specific increase in the AMPA receptor-mediated component of synaptic transmission. We now report, however, that a pharmacologically isolated NMDA receptor-mediated synaptic response can undergo robust, synapse-specific LTP. This finding has implications for neuropathologies such as epilepsy and neurodegeneration, in which excessive NMDA receptor activation has been implicated. It adds fundamentally to theories of synaptic plasticity because NMDA receptor activation may, in addition to causing increased synaptic efficiency, directly alter the plasticity of synapses.  相似文献   

18.
Excitatory amino acids act via receptor subtypes in the mammalian central nervous system (CNS). The receptor selectively activated by N-methyl-D-aspartic acid (NMDA) has been best characterized using voltage-clamp and single-channel recording; the results suggest that NMDA receptors gate channels that are permeable to Na+, K+ and other monovalent cations. Various experiments suggest that Ca2+ flux is also associated with the activation of excitatory amino-acid receptors on vertebrate neurones. Whether Ca2+ enters through voltage-dependent Ca2+ channels or through excitatory amino-acid-activated channels of one or more subtype is unclear. Mg2+ can be used to distinguish NMDA-receptor-activated channels from voltage-dependent Ca2+ channels, because at micromolar concentrations Mg2+ has little effect on voltage-dependent Ca2+ channels while it enters and blocks NMDA receptor channels. Marked differences in the potency of other divalent cations acting as Ca2+ channel blockers compared with their action as NMDA antagonists also distinguish the NMDA channel from voltage-sensitive Ca2+ channels. However, we now directly demonstrate that excitatory amino acids acting at NMDA receptors on spinal cord neurones increase the intracellular Ca2+ activity, measured using the indicator dye arsenazo III, and that this is the result of Ca2+ influx through NMDA receptor channels. Kainic acid (KA), which acts at another subtype of excitatory amino-acid receptor, was much less effective in triggering increases in intracellular free Ca2+.  相似文献   

19.
Furukawa H  Singh SK  Mancusso R  Gouaux E 《Nature》2005,438(7065):185-192
Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.  相似文献   

20.
Glycine potentiates the NMDA response in cultured mouse brain neurons   总被引:46,自引:0,他引:46  
J W Johnson  P Ascher 《Nature》1987,325(6104):529-531
Transmitters mediating 'fast' synaptic processes in the vertebrate central nervous system are commonly placed in two separate categories that are believed to exhibit no interaction at the receptor level. The 'inhibitory transmitters' (such as glycine and GABA) are considered to act only on receptors mediating a chloride conductance increase, whereas 'excitatory transmitters' (such as L-glutamate) are considered to activate receptors mediating a cationic conductance increase. The best known excitatory receptor is that specifically activated by N-methyl-D-aspartate (NMDA) which has recently been characterized at the single channel level. The response activated by NMDA agonists is unique in that it exhibits a voltage-dependent Mg block. We report here that this response exhibits another remarkable property: it is dramatically potentiated by glycine. This potentiation is not mediated by the inhibitory strychnine-sensitive glycine receptor, and is detected at a glycine concentration as low as 10 nM. The potentiation can be observed in outside-out patches as an increase in the frequency of opening of the channels activated by NMDA agonists. Thus, in addition to its role as an inhibitory transmitter, glycine may facilitate excitatory transmission in the brain through an allosteric activation of the NMDA receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号