首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
孙文祥 《科学通报》1989,34(23):1838-1838
R. Bowen对于紧致度量空间上的自同胚引入了抽象ω-极限集的概念,并得出了一些有意义的性质。作为推广,本文对紧致度量空间上的自映射定义了抽象ω-极限集,随后证明了两个等价条件,这些条件清楚地刻划出这种极限集的动力学意义。本文的主要定理指出,若公理A自覆盖映射f的不变集ΛQ(f)为抽象ω-极限集,则存在x∈[Q(f)]~f使Λ=ω(x)=α(x)。由此可以看出,作为一类稳定的双曲集Q(f),虽然不能  相似文献   

2.
蒋云平 《科学通报》1986,31(8):571-571
一、引言 设X是一个紧致度量空间。记X到X的全体连续映射的集合为C~0(M,M),并赋与一致收敛拓扑。设f∈C~0(X,X),记f的周期点集、非游荡点集和拓扑熵为P(f)、Ω(f)和h(f)。我们可以考虑下述的函数:  相似文献   

3.
周作领 《科学通报》1982,27(19):1214-1214
设x是一个紧致度量空间。X到自身全体连续映射的集合用C~o(X,x)表示,并赋以一致收敛拓扑。 对每一个f∈C~o(X,X),f的拓扑熵ent(f)是一个非负实数或 ∞。因此我们可以考虑函数  相似文献   

4.
无异状点的线段自映射——中心和深度   总被引:3,自引:0,他引:3  
周作领 《科学通报》1981,26(22):1405-1405
设X是紧致拓扑空间,f是X到自身的连续映射。用Q(f)表f的非游荡集。Q(f)是X的闭子集,且f(Q(f))(?)Q(f)。  相似文献   

5.
周作领 《科学通报》1988,33(11):875-875
设X是紧致度量空间和f:X→X连续。f的拓扑熵ent(f)的估计问题是动力系统理论中一个重要而困难的问题,至今进展不大。例如,据作者所知,对一般情形而言,至今尚未求得拓扑熵为零的充要条件。最近,我们用遍历理论方法得到如下结果:  相似文献   

6.
熊金城 《科学通报》1984,29(10):638-638
设C~0(S~1,S~1)为圆周S~1到自身的全体连续映射集合,并设f∈C~0(S~1,S~1)。周期点集、回归点集、非游荡集以及x的ω极限点集分别记作P(f)、露(f)、Ω(f)和ω(x,f),f的拓扑熵记作ent(f)。  相似文献   

7.
我们用记单位圆盘△={z∈C:|Z|<1}上的全体解析函数,则在赋于内闭一致收敛的拓扑下成为局部凸拓扑向量空间,设f(z),F(z),f(z)相似文献   

8.
代雄平 《科学通报》1996,41(6):481-484
Sakai定义了一般紧致度量空间上的Anosov映射。孙文祥证明了在一般紧致度量空间上,Anosov映射具有轨道拓扑稳定性,有Markov分解和有理的ξ-函数,并在文献[4]中,给出了拓扑熵的一个计算公式。 本文继续研究Anosov映射的拓扑熵,但侧重于熵与周期点的关系,得到 定理 设(X,d)是紧致度量空间,f∈C°(X)为具有常数c>0的Anosov映射,则  相似文献   

9.
I(L)型诱导空间与良紧性   总被引:7,自引:0,他引:7  
王戈平 《科学通报》1989,34(5):333-333
诱导空间在不分明拓扑中是十分重要的。众所周知,任一拓扑空间(X,Y)上取值于I=[0,1]的下半连续函数全体对任意上确界与有限下确界关闭,因此这些下半连续函数构成X上的一个不分明拓扑,记为ω(Y)。(I~x,ω(Y))称为由拓扑空间(X,Y)诱导的不分明拓扑空间。Lowen在文献[2]中提出,把通常拓扑空间中某一性质(如紧性、分离性、连通性等等)推广到不分明拓扑空间中时,应当遵循“好的推广”这一原则,即诱导空间(I~x,  相似文献   

10.
陈吉象 《科学通报》1987,32(24):1844-1844
Rajagopalan和Wilansky在文献[1]中提出了可逆拓扑空间的概念,此后一些作者也做了一系列的研究。对任意拓扑空间X,令E(X)和H(X)分别表示X到自身的连续双射(即既单又满的连续映射)和自同胚的全体。如果E(X)=H(X),则X称为可逆拓扑空间,否则称X为非可逆的。可逆空间包括了紧致Hausdorff空间以及n维(对一切正整数n)不带边流形等一大类空间。文献[1]定理6指出,若X由有限个连通支组成,则X可逆的充要条件  相似文献   

11.
1.设(X,d)为紧致度量空间。用C~0(X,X)表全体X上连续自映射的集合并赋以C~0拓扑(一致收敛拓扑)。设f∈C~0(X,X)和任给ε>0。设x,y∈X。从x到y的一个ε链是指有限序列{x_0,…,x_n},使得x_0=x,x_n=y且d(f(x_(i-1)),x_i)<ε,i=1,2,…,n。用CR_ε(x)表X的这样的子集,使得y∈CR_ε(x)当且仅当存在从x到y的ε链。当y∈CR_ε(x)  相似文献   

12.
滕辉 《科学通报》1993,38(1):1-1
设X,Y是拓扑空间。C_p(X,Y)记由X到Y的全体连续函数带上点态收敛拓扑(见后面的定义)后的函数空间。函数空间理论研究的基本问题之一是确定拓扑性质对(P,Q)使得C_p(X,Y)具有性质P的充要条件是X具有性质Q.Zenor证明了对于Tychonoff空间X和实数空间R,X~∞是遗传Lindelf(遗传可分)的充分必要条件是C_p(X,R~ω)  相似文献   

13.
周友成 《科学通报》1993,38(16):1453-1453
任意小同胚及其有限复合是拓扑和动力体系中有兴趣的对象。本文研究紧致度量空间(连续统)中可以用有限多个任意小同胚相连结的区域。设X是具有度量ρ的紧致度量空间,G是X的同胚群H(X)之子群,o是G的对称开集(即o=o~(-1))且单位元1∈o.定义 G_o={k∈G:存在o的有限子集{k_1,…,k_n}使得k=k_nok_(n-1)o…ok_1}。易见,G_o是G的开、闭子群。  相似文献   

14.
周作领 《科学通报》1986,31(22):1756-1756
设(X,d)为紧致度量空间,f:X→X连续。设f是逐点周期的,如果对每一点x∈X,都存在整数n(x)>0,使f~(n(x))(x)=x,即P(f)=x。设f是周期的,如果存在整数m>0,使f~n=id,即f~n是恒同映射。Montgomery(Amer.J.Math.,59(1937),pp.  相似文献   

15.
Anosov映射的单一化拓扑稳定性   总被引:3,自引:2,他引:1  
孙文祥 《科学通报》1989,34(8):635-635
Sakai指出Anosov映射在连续满射构成的空间内不具有拓扑稳定性(扩张映射除外),而我们的结果表明Anosov映射保持着轨道定向意义下的稳定性,即单一化拓扑稳定性。 设M为紧致度量空间,以C~0(M)记M上全体连续满射(带C~0拓扑)形成的空间。对f∈C~0(M),记称为f的轨道空间。为  相似文献   

16.
S~1上扩张映射的拓扑熵   总被引:3,自引:0,他引:3  
刘旺金 《科学通报》1983,28(4):202-202
设M是紧致光滑流形,C~r(M,M)表示M到自身的全体C~r映射的集合,具有C~r拓扑(r≥0)。拓扑熵是一函数ent:C~0(M,M)→R~1U( ∞),ent:C~r(M,M)→R~1,r≥1,其中R~1是实数域。对F∈C~r(M,M),拓扑熵ent(f)的计算是一个复杂的问题,即使对于很简单的空间也是  相似文献   

17.
R~m是m维欧氏空间。S■R~m是开凸锥,则S∪{o)在R~m上确定了一个偏序“>_s”,设S∩(-S)=0。则此偏序具有传递性、反身性及反对称性。X是非空紧致距离空间,2~X是X的所有非空紧致子集的集合。f=(f_1,……,f_m)是X到R~m的连续映象。f_i(i=1,2…m)是X上的连续函数。R∈2~X。  相似文献   

18.
施锡泉 《科学通报》1988,33(22):1753-1753
设x是普通集合,g∈(?)(1×X),(I=[0,1]),f是X的幂集P(X)到X的模糊幂集(?)(X)的映射。我们用以下的形式给出了(?)(X)上的变换g(?)f,并称之为广义的扩展原则。对于(?)A∈F(X)  相似文献   

19.
线段自映射浑沌集合的Hausdorff维数   总被引:1,自引:0,他引:1  
顾荣宝 《科学通报》1996,41(18):1633-1635
记I为单位闭区间[0,1],(I)表示I上全体连续自映射的集合并赋予C~0-拓扑(即由度量ρ(f,g)=sup{|f(x)-g(x)||x∈I|所诱导的拓扑)所成的空间。 设非空集合称为对于映射f而言是Li-Yorke浑沌的,如果对于任意x,y∈C,x≠y, 浑沌集合的性状反映了映射的动力性质的复杂程度。因此,从不同的角度对浑沌集合进行深入研究,成为近年来许多学者所关注的课题。Mizera证明了Li-Yorke浑沌集合的Lebesgue测度为零是一个通有性质。本文的目的是用Hausdorff维数作为度量的标准来研究浑沌集合的大小。主要结论是  相似文献   

20.
测度中心与极小吸引中心   总被引:3,自引:0,他引:3  
周作领 《科学通报》1992,37(23):2115-2115
本文对紧致可度量空间上的连续自映射给出极小吸引中心的定义(流的情形见文献),并证明极小吸引中心与测度中心相等。 设(X,d)为紧致度量空间和f:X→X连续。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号