共查询到15条相似文献,搜索用时 109 毫秒
1.
H2O2增效Ag+掺杂ZnO纳米晶光催化体系降解亚甲基蓝 总被引:1,自引:0,他引:1
以水合碳酸锌为前驱体,利用激光复合加热蒸发技术,制得粒径分布均匀,平均粒径在30 nm左右的Ag 掺杂ZnO纳米晶半导体光催化剂.利用UV-Vis,TEM,AFM和XRD等进行了表征.对光催化体系降解亚甲基蓝(MB)的研究表明:悬浮Ag 掺杂ZnO纳米晶的悬浮水相体系中,Ag 的掺杂能有效地改善ZnO对亚甲基蓝的光催化降解性能.此外,H2O2能有效增强Ag 掺杂ZnO纳米晶对MB的降解效率,H2O2浓度为0.05 mol/L时可以使Ag 掺杂ZnO纳米晶的光催化效率提高近1倍.降解产物光谱分析表明:H2O2的存在优先使MB的苯环开环降解,并使其降解更彻底. 相似文献
2.
合成Fe2O3纳米粒子复合纤维素膜.采用XRD、TEM和磁力线等多种方法对Fe2O3纳米粒子复合纤维素膜的结构和性能进行表征,并研究Fe2O3纳米粒子复合纤维素膜对亚甲基蓝的降解作用.结果表明:当溶液中H2SO4加量为25.8mol/L、H2O2加量为2.4mol/L时,用5g/L的复合纤维素膜对1.4×10-5 mol/L的亚甲基蓝溶液进行降解,25min内降解率达到100%. 相似文献
3.
纳米氧化亚铜可见光催化分解亚甲基蓝 总被引:17,自引:0,他引:17
以太阳光为源,在自制纳米Cu2O粉末悬浮体系中,以亚甲基蓝溶液光催化降解反应为模型,探讨了其脱色降解动力学,详细研究了影响亚甲基蓝光催化降解的各种因素,寻找最佳反应条件,研究表明,加入H2O2,提高溶液pH值等方法可以显著提高亚甲基蓝的脱色降解速率。 相似文献
4.
纳米TiO2光催化降解亚甲基蓝的研究 总被引:6,自引:1,他引:6
在封闭的光催化反应器中,以紫外光为光源,γ-Al2O3为载体,纳米TiO2为催化剂,进行了亚甲基蓝溶液降解脱色研究,分别从催化剂用量、反应初始浓度、光源强度及H2O2的添加量等方面考查了亚甲基蓝的降解率。结果表明,能够有效地完成亚甲基蓝等有机物降解脱色和降解,降解率可达95%以上。 相似文献
5.
印染废水主要含有染料等难降解的有机物,由于其色度和有机物浓度高,对环境污染较大,因此在排放前需进行降解脱色处理。催化氧化法是处理高浓度难降解有机废水有效的方法,通过共沉淀法制取Cu-Al2O3催化剂,并运用非均相催化氧化法,以亚甲基蓝为目标降解物,在微波条件下评价Cu-Al2O3催化剂的催化性能。分别考察了催化剂用量、H2O2浓度、微波强度以及溶液pH值4个反应条件对降解效果的影响,用紫外分光光度计测定实验前后亚甲基蓝的吸光度,最后用脱出率表征降解指标。通过实验结果对比,并从节约药品考虑,优化出最佳实验条件为,催化剂用量0.2g;H2O2浓度为0.4%;微波功率为中低火(150W);溶液pH〈7。 相似文献
6.
用溶胶-凝胶法制备了一系列不同Fe^3+掺杂量(ω0.00%~3.00%)的纳米TiO。光催化剂,利用TEM,XRD,UV—Vis等技术对其形貌和结构进行了表征.以亚甲基蓝(MB)的脱色降解为模型,研究了在自然先条件下Fe^3+掺杂量对其光催化活性的影响.结果表明.在所研究的掺杂范围内,该纳米粒子的粒径随Fe^3+掺杂量的增加呈减小趋势;Fe^3+的掺入不仅可以控制TiO2由锐钛矿向金红石的转变,而且可以使该纳米微粒对光的吸收向可见区拓展;Fe^3+的适量掺入.可以显著提高纳米TiO2在自然先条件下的催化活性. 相似文献
7.
纳米TiO2/玻璃薄膜光催化降解亚甲基蓝的研究 总被引:3,自引:1,他引:3
王娅娟 《山东师范大学学报(自然科学版)》2003,18(1):39-42
用溶胶 -凝胶法在玻璃表面制备了均匀透明的纳米TiO2 薄膜 .采用高压汞灯为光源 ,敞口固定床反应器对水中染料亚甲基蓝进行了光催化氧化实验 .实验结果表明 :随着涂膜次数的增加 ,薄膜TiO2 负载量增加 ,锐钛矿晶相粒径增大 .TiO2 薄膜对亚甲基蓝氧化降解具有较高的光催化活性 ,降解反应符合一级速率方程 .对亚甲基蓝的暗态吸附及光催化降解机理作了初步探讨 相似文献
8.
《齐齐哈尔大学学报(自然科学版)》2019,(3)
采用溶胶-凝胶法制备不同Fe_2O_3含量的Fe_2O_3/SnO_2复合催化剂,分析其组成和性质,以亚甲基蓝溶液为染料模型,研究催化剂的光催化降解性能及最佳降解条件。结果表明,Fe_2O_3和SnO_2得到良好的复合,当Fe_2O_3含量为10%时,Fe_2O_3/SnO_2具有良好的催化活性,且降解的最佳条件为添加0.3 mL/L H2O2,pH为7,催化剂用量为15 mg,染料浓度为5 mg/l时,用300 W汞灯照射2 h,亚甲基蓝的降解率最大。 相似文献
9.
首先通过溶剂热法制备Fe3 O4磁核作为种子,然后通过St?ber法在种子外包覆SiO2层,再在SiO2层上通过均匀沉淀法使CeO2沉积在表面,得到Fe3 O4@SiO2@CeO2磁性纳米材料,并将其作为纳米吸附剂应用于废水中亚甲基蓝的吸附研究.通过优化该吸附剂的用量、溶液初始pH、震荡时间、解吸剂H2 O2的用量等条... 相似文献
10.
掺杂Zn2+纳米TiO2光催化降解亚甲基蓝 总被引:1,自引:0,他引:1
印染废水治理是水系环境治理的重点,而亚甲基蓝是印染废水中典型的有机污染物。本研究选用掺杂Zn2+的纳米TiO2作为光催化剂对亚甲基蓝进行降解研究。XRD谱图分析表明,Zn2+的掺入可改变纳米TiO2锐钛矿型和金红石型的组成。制备工艺参数对样品光催化降解亚甲基蓝的活性具有很大影响,纯TiO2样品在450℃焙烧时的活性较其他温度的高;而掺杂Zn2+的样品则在500℃焙烧时的光催化活性相对最佳。催化剂的加入量过高或过低都不利于光催化活性的提高,催化剂的加入量为1g/L时,光催化剂对亚甲基蓝的降解效果最好;Zn2+掺入量为0.5%时,掺杂粉体的光催化活性相对较高。随着掺杂量的进一步增加,光催化活性降低。被降解有机物浓度过高时,紫外光较难到达催化剂表面,光的利用率降低,导致催化剂活性降低。亚甲基蓝的初始浓度为5mg/L时的降解速率较快。 相似文献
11.
TiO2/H2O2光催化体系降解亚甲基蓝的动力学研究 总被引:3,自引:0,他引:3
采用TiO2/H2O2催化体系对亚甲基蓝的光催化降解性能进行了动力学研究,结果表明:TiO2和H2O2的光催化反应符合动力学一级反应规律;TiO2的多相催化反应有诱导期,反应速度较慢;H2O2的均相催化没有诱导期,反应速度较快;TiO2和H2O2的复合催化可同时利用不同波段的光,能提高光的利用率,加快HO自由基的生成及其在水中的传递,加快了有机物的降解过程,提高降解速度. 相似文献
12.
TiO_2光催化降解亚甲基蓝机理的研究 总被引:2,自引:0,他引:2
进行了亚甲基蓝光解、吸附及光催化对比实验,以及·OH清除剂叔丁醇、电子空穴对(e-,h-,h+)结合抑制剂过氧化氢、空穴(h_(VB)+)结合抑制剂过氧化氢、空穴(h_(VB)+)清除剂碘化钾、单线态氧(+)清除剂碘化钾、单线态氧(1O_2)清除剂叠氮钠、超氧自由基(O_21O_2)清除剂叠氮钠、超氧自由基(O_2(·-))清除剂苯醌对TiO_2光催化降解亚甲基蓝降解率的影响实验,同时测定了光催化反应过程中H_2O_2的生成,证明了TiO_2光催化降解亚甲基蓝体系中主要活性氧形态为·OH,O_2(·-))清除剂苯醌对TiO_2光催化降解亚甲基蓝降解率的影响实验,同时测定了光催化反应过程中H_2O_2的生成,证明了TiO_2光催化降解亚甲基蓝体系中主要活性氧形态为·OH,O_2(·-)和(·-)和1O_2. 相似文献
13.
二氧化钛负载磷钨钼杂多酸催化合成环己酮乙二醇缩酮 总被引:1,自引:0,他引:1
采用浸渍法制备了二氧化钛负载磷钨钼杂多酸催化剂H3PW6Mo6O40/TiO2, 该催化剂的适宜制备条件为: 原料TiO2和H3PW6Mo6O40的质量均为1.0 g,水的用量30 mL,浸渍时间12 h,活化温度150 ºC。以H3PW6Mo6O40/TiO2为催化剂,对以环己酮与乙二醇为原料合成环己酮乙二醇缩酮的反应条件进行了研究,较系统地研究了酮醇物质的量比、催化剂用量、反应时间对收率的影响。实验结果表明,在n(环己酮)∶n(乙二醇)=1.0∶1.5、催化剂用量占反应物料总质量的1.0%、反应时间0.75 h的条件下,环己酮乙二醇缩酮的收率为87.7%。 相似文献
14.
用溶胶-凝胶法制备钒氮共掺杂TiO2光催化剂,以亚甲基蓝的降解率为评价指标,考察钒氮共掺杂TiO2光催化降解亚甲基蓝的影响因素.结果表明,钒氮共掺杂能显著提高TiO2的光催化活性;在本实验条件下,钒氮添加量(与Ti的摩尔比)分别为0.1%、10%的TiO2于600℃焙烧、投入量为3g/L、溶液pH值为4~7、超声振荡30min、光照催化氧化处理4h的条件对处理低浓度亚甲基蓝溶液效果最好. 相似文献
15.
微波辐射降解水中高浓度有机物的H2O2综合反应体系研究 总被引:1,自引:0,他引:1
以1.0g苯酚溶于1000mL无酚水中作为高浓度的有机物模拟水样组成反应模型,在微波辐射下研究了H2O2综合反应体系H2O2/TiO2;H2O2/Fe^2+;H2O2/活性炭;H2O2,Fe^2+/活性炭对水中高浓度苯酚的降解作用,实验测量了H2O2在不同体系中的分解速率,并测量苯酚在这些体系中的分解速率和有机物耗氧量(CODCr)去除率,实验表明H2O2所在体系的分解速率和苯酚的分解速率依次为H2O2,Fe^2+/活性炭〉H2O2/Fe^2+〉H2O2/活性炭〉H2O2/TiO2,而体系H2O2/活性炭由于活性炭在微波辐射下有较强的氧化协同作用,该体系对有机物COD呈现出很高的去除率。 相似文献