首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. A better understanding of the viral life cycle, including the mechanisms of entry into host cells, is needed to identify novel therapeutic targets. Although HCV entry requires the CD81 co-receptor, and other host molecules have been implicated, at least one factor critical to this process remains unknown (reviewed in refs 1-3). Using an iterative expression cloning approach we identified claudin-1 (CLDN1), a tight junction component that is highly expressed in the liver, as essential for HCV entry. CLDN1 is required for HCV infection of human hepatoma cell lines and is the first factor to confer susceptibility to HCV when ectopically expressed in non-hepatic cells. Discrete residues within the first extracellular loop (EL1) of CLDN1, but not protein interaction motifs in intracellular domains, are critical for HCV entry. Moreover, antibodies directed against an epitope inserted in the CLDN1 EL1 block HCV infection. The kinetics of this inhibition indicate that CLDN1 acts late in the entry process, after virus binding and interaction with the HCV co-receptor CD81. With CLDN1 we have identified a novel key factor for HCV entry and a new target for antiviral drug development.  相似文献   

2.
Waggoner SN  Cornberg M  Selin LK  Welsh RM 《Nature》2012,481(7381):394-398
Antiviral T cells are thought to regulate whether hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections result in viral control, asymptomatic persistence or severe disease, although the reasons for these different outcomes remain unclear. Recent genetic evidence, however, has indicated a correlation between certain natural killer (NK)-cell receptors and progression of both HIV and HCV infection, implying that NK cells have a role in these T-cell-associated diseases. Although direct NK-cell-mediated lysis of virus-infected cells may contribute to antiviral defence during some virus infections--especially murine cytomegalovirus (MCMV) infections in mice and perhaps HIV in humans--NK cells have also been suspected of having immunoregulatory functions. For instance, NK cells may indirectly regulate T-cell responses by lysing MCMV-infected antigen-presenting cells. In contrast to MCMV, lymphocytic choriomeningitis virus (LCMV) infection in mice seems to be resistant to any direct antiviral effects of NK cells. Here we examine the roles of NK cells in regulating T-cell-dependent viral persistence and immunopathology in mice infected with LCMV, an established model for HIV and HCV infections in humans. We describe a three-way interaction, whereby activated NK cells cytolytically eliminate activated CD4 T cells that affect CD8 T-cell function and exhaustion. At high virus doses, NK cells prevented fatal pathology while enabling T-cell exhaustion and viral persistence, but at medium doses NK cells paradoxically facilitated lethal T-cell-mediated pathology. Thus, NK cells can act as rheostats, regulating CD4 T-cell-mediated support for the antiviral CD8 T cells that control viral pathogenesis and persistence.  相似文献   

3.
Sheep retrovirus structural protein induces lung tumours   总被引:1,自引:0,他引:1  
Wootton SK  Halbert CL  Miller AD 《Nature》2005,434(7035):904-907
Jaagsiekte sheep retrovirus (JSRV) causes a contagious lung cancer in sheep and goats, with significant animal health and economic consequences. The host range of JSRV is in part limited by species-specific differences in the virus entry receptor, hyaluronidase 2 (Hyal2), which is not functional as a receptor in mice but is functional in humans. Sheep are immunotolerant of JSRV because of the expression of closely related endogenous retroviruses, which are not present in humans and most other species, and this may facilitate oncogenesis. Here we show that expression of the JSRV envelope (Env) protein alone in lungs of mice, by using a replication-incompetent adeno-associated virus vector, results in tumours with a bronchiolo-alveolar localization like those seen in sheep. Whereas lethal disease was observed in immunodeficient mice, tumour development was almost entirely blocked in immunocompetent mice. Our results provide a rare example of an oncogenic viral structural protein, show that interaction of the viral Env protein with the virus entry receptor Hyal2 is not required for tumorigenesis, and indicate that immune recognition of Env can protect against JSRV tumorigenesis.  相似文献   

4.
T-lymphocyte immunity is likely to be an important component of the immune defence against the AIDS virus, because helper T cells are necessary for the antibody response as well as the cytotoxic response. We have previously predicted two antigenic sites of the viral envelope protein gp120 likely to be recognized by T lymphocytes, based on their ability to fold as amphipathic helices, and have demonstrated that these are recognized by T cells of mice immunized with gp120 (ref. 1). A peptide corresponding to one of these sites can also be induce immunity in mice to the whole gp120 protein. Because many clinically healthy seropositive blood donors have already lost their T-cell proliferative response to specific antigen, we tested the response to these synthetic peptides of lymphocytes from 14 healthy human volunteers who had been immunized with a recombinant vaccinia virus containing the AIDS viral envelope gene and boosted with a recombinant fragment. Eight of the 14 responded to one peptide, and four to the other peptide, not included in the boost. These antigenic sites recognized by human T cells may be useful components of a vaccine against AIDS. We also found a correlation between boosting with antigen-antibody complexes (compared to free antigen) and higher stimulation indices, suggesting a more effective method of immunization.  相似文献   

5.
JW Shui  A Larange  G Kim  JL Vela  S Zahner  H Cheroutre  M Kronenberg 《Nature》2012,488(7410):222-225
The herpes virus entry mediator (HVEM), a member of the tumour-necrosis factor receptor family, has diverse functions, augmenting or inhibiting the immune response. HVEM was recently reported as a colitis risk locus in patients, and in a mouse model of colitis we demonstrated an anti-inflammatory role for HVEM, but its mechanism of action in the mucosal immune system was unknown. Here we report an important role for epithelial HVEM in innate mucosal defence against pathogenic bacteria. HVEM enhances immune responses by NF-κB-inducing kinase-dependent Stat3 activation, which promotes the epithelial expression of genes important for immunity. During intestinal Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli infection, Hvem?/? mice showed decreased Stat3 activation, impaired responses in the colon, higher bacterial burdens and increased mortality. We identified the immunoglobulin superfamily molecule CD160 (refs 7 and 8), expressed predominantly by innate-like intraepithelial lymphocytes, as the ligand engaging epithelial HVEM for host protection. Likewise, in pulmonary Streptococcus pneumoniae infection, HVEM is also required for host defence. Our results pinpoint HVEM as an important orchestrator of mucosal immunity, integrating signals from innate lymphocytes to induce optimal epithelial Stat3 activation, which indicates that targeting HVEM with agonists could improve host defence.  相似文献   

6.
Binding of the human immunodeficiency virus (HIV) to infectable host cells, such as B and T lymphocytes, monocytes and colorectal cells, is mediated by a high-affinity interaction between the gp120 component of the viral envelope glycoprotein and the CD4 receptor. Upon binding, it is thought that the second component of the envelope, gp41, mediates fusion between the viral envelope and host cell membranes. However, the early steps of HIV infection have not yet been thoroughly elucidated. Viral entry was first reported to be mediated by pH-dependent receptor-mediated endocytosis; subsequent studies have shown entry to be pH-independent. Although direct fusion of virus to plasma membranes of infected cells has been observed by electron microscopy, it is still formally possible that the infectious path of the virus involves receptor-mediated endocytosis. To gain a better understanding of receptor function in viral entry, we have analysed the ability of several altered or truncated forms of CD4 to serve as effective viral receptors. Our results indicate that domains beyond the HIV-binding region of CD4 are not required for viral infection. Some of the altered forms of CD4 that serve as effective HIV receptors are severely impaired in their ability to be endocytosed. These experiments therefore support the notion that viral fusion to the plasma membrane is sufficient for infection.  相似文献   

7.
Bowen DG  Walker CM 《Nature》2005,436(7053):946-952
The hepatitis C virus (HCV) persists in the majority of infected individuals and is a significant cause of human illness and death globally. Recent studies have yielded important insights into immunity to HCV, in particular revealing the central role of T cells in viral control and clearance. Other key features of adaptive immune responses remain obscure, including mechanisms by which T cells control HCV replication, the role of antibodies in conferring protection and how cellular and humoral immunity are subverted in persistent infection.  相似文献   

8.
Five highly conserved and immunogenic epitopes of hepatitis C virus (HCV) have been chosen to form a multi-epitope antigen gene and fused with β-galactosidase gene to express a hybrid GZ-PCX antigen, which could be specifically recognized by human HCV sera. High level of anti-GZ-PCX IgG has been induced when mice or rabbits were immunized with GZ-PCX antigen emulsificated with complete Freund’s adjuvant or mixed with killed attenuatedSalmonella typhimurium SL3261. The specific anti-GZ-PCX IgG reached a high titer of 10-6, which remained for several months. Specific cytotoxic T lymphocyte (CTL) effects, delayed type hypersensitivity reaction (DTH) and proliferation of peripheral lymphocytes have been induced by GZ-PCX antigen or synthetic peptides. High level of anti-GZ-PCX slgG has been detected in mice’s intestinal washing fluids, which indicates that the antigen induced mucosal immunity as well as systematic immunity. The studies show that the HCV multi-epitope antigen induces high level of specific immune responses without obvious toxicity, which might be able to provide protectivity to any HCV genotypes and isolates.  相似文献   

9.
A common viral immune evasion strategy involves mutating viral surface proteins in order to evade host neutralizing antibodies. Such immune evasion tactics have not previously been intentionally applied to the development of novel viral gene delivery vectors that overcome the critical problem of anti-vector immunity. Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based vaccines for human immunodeficiency virus type 1 and other pathogens have proved highly immunogenic in preclinical studies but will probably be limited by the high prevalence of pre-existing anti-Ad5 immunity in human populations, particularly in the developing world. Here we show that rAd5 vectors can be engineered to circumvent anti-Ad5 immunity. We constructed novel chimaeric rAd5 vectors in which the seven short hypervariable regions (HVRs) on the surface of the Ad5 hexon protein were replaced with the corresponding HVRs from the rare adenovirus serotype Ad48. These HVR-chimaeric rAd5 vectors were produced at high titres and were stable through serial passages in vitro. HVR-chimaeric rAd5 vectors expressing simian immunodeficiency virus Gag proved comparably immunogenic to parental rAd5 vectors in naive mice and rhesus monkeys. In the presence of high levels of pre-existing anti-Ad5 immunity, the immunogenicity of HVR-chimaeric rAd5 vectors was not detectably suppressed, whereas the immunogenicity of parental rAd5 vectors was abrogated. These data demonstrate that functionally relevant Ad5-specific neutralizing antibodies are focused on epitopes located within the hexon HVRs. Moreover, these studies show that recombinant viral vectors can be engineered to circumvent pre-existing anti-vector immunity by removing key neutralizing epitopes on the surface of viral capsid proteins. Such chimaeric viral vectors may have important practical implications for vaccination and gene therapy.  相似文献   

10.
Koebel CM  Vermi W  Swann JB  Zerafa N  Rodig SJ  Old LJ  Smyth MJ  Schreiber RD 《Nature》2007,450(7171):903-907
The capacity of immunity to control and shape cancer, that is, cancer immunoediting, is the result of three processes that function either independently or in sequence: elimination (cancer immunosurveillance, in which immunity functions as an extrinsic tumour suppressor in naive hosts); equilibrium (expansion of transformed cells is held in check by immunity); and escape (tumour cell variants with dampened immunogenicity or the capacity to attenuate immune responses grow into clinically apparent cancers). Extensive experimental support now exists for the elimination and escape processes because immunodeficient mice develop more carcinogen-induced and spontaneous cancers than wild-type mice, and tumour cells from immunodeficient mice are more immunogenic than those from immunocompetent mice. In contrast, the equilibrium process was inferred largely from clinical observations, including reports of transplantation of undetected (occult) cancer from organ donor into immunosuppressed recipients. Herein we use a mouse model of primary chemical carcinogenesis and demonstrate that equilibrium occurs, is mechanistically distinguishable from elimination and escape, and that neoplastic cells in equilibrium are transformed but proliferate poorly in vivo. We also show that tumour cells in equilibrium are unedited but become edited when they spontaneously escape immune control and grow into clinically apparent tumours. These results reveal that, in addition to destroying tumour cells and sculpting tumour immunogenicity, the immune system of a naive mouse can also restrain cancer growth for extended time periods.  相似文献   

11.
Okeoma CM  Lovsin N  Peterlin BM  Ross SR 《Nature》2007,445(7130):927-930
Genomes of all mammals encode apobec3 genes, which are thought to have a function in intrinsic cellular immunity to several viruses including human immunodeficiency virus type 1 (HIV-1). APOBEC3 (A3) proteins are packaged into virions and inhibit retroviral replication in newly infected cells, at least in part by deaminating cytidines on the negative strand DNA intermediates. However, the role of A3 in innate resistance to mouse retroviruses is not understood. Here we show that A3 functions during retroviral infection in vivo and provides partial protection to mice against infection with mouse mammary tumour virus (MMTV). Both mouse A3 and human A3G proteins interacted with the MMTV nucleocapsid in an RNA-dependent fashion and were packaged into virions. In addition, mouse A3-containing and human A3G-containing virions showed a marked decrease in titre. Last, A3(-/-) mice were more susceptible to MMTV infection, because virus spread was more rapid and extensive than in their wild-type littermates.  相似文献   

12.
Soroceanu L  Akhavan A  Cobbs CS 《Nature》2008,455(7211):391-395
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus that can cause life-threatening disease in the fetus and the immunocompromised host. Upon attachment to the cell, the virus induces robust inflammatory, interferon- and growth-factor-like signalling. The mechanisms facilitating viral entry and gene expression are not clearly understood. Here we show that platelet-derived growth factor-alpha receptor (PDGFR-alpha) is specifically phosphorylated by both laboratory and clinical isolates of HCMV in various human cell types, resulting in activation of the phosphoinositide-3-kinase (PI(3)K) signalling pathway. Upon stimulation by HCMV, tyrosine-phosphorylated PDGFR-alpha associated with the p85 regulatory subunit of PI(3)K and induced protein kinase B (also known as Akt) phosphorylation, similar to the genuine ligand, PDGF-AA. Cells in which PDGFR-alpha was genetically deleted or functionally blocked were non-permissive to HCMV entry, viral gene expression or infectious virus production. Re-introducing human PDGFRA gene into knockout cells restored susceptibility to viral entry and essential viral gene expression. Blockade of receptor function with a humanized PDGFR-alpha blocking antibody (IMC-3G3) or targeted inhibition of its kinase activity with a small molecule (Gleevec) completely inhibited HCMV viral internalization and gene expression in human epithelial, endothelial and fibroblast cells. Viral entry in cells harbouring endogenous PDGFR-alpha was competitively inhibited by pretreatment with PDGF-AA. We further demonstrate that HCMV glycoprotein B directly interacts with PDGFR-alpha, resulting in receptor tyrosine phosphorylation, and that glycoprotein B neutralizing antibodies inhibit HCMV-induced PDGFR-alpha phosphorylation. Taken together, these data indicate that PDGFR-alpha is a critical receptor required for HCMV infection, and thus a target for novel anti-viral therapies.  相似文献   

13.
J M Zarling  W Morton  P A Moran  J McClure  S G Kosowski  S L Hu 《Nature》1986,323(6086):344-346
There is much interest in developing vaccines against acquired immune deficiency syndrome (AIDS), which is caused by a retrovirus termed human immunodeficiency virus (HIV). Isolates of this virus include human T-lymphotropic virus type III (HTLV-III), lymphadenopathy-associated virus (LAV), and AIDS-associated retrovirus (ARV). Several approaches towards the development of an AIDS vaccine result in the production of antibodies in subprimates. These methods involve the use of: antigens isolated from the AIDS virus; viral antigens expressed by transfected cells or by recombinant vaccinia viruses; and particular synthetic peptides of viral antigens. Because T-cell-mediated immunity (in addition to antibodies) is involved in resistance to diseases and death caused by various enveloped viruses, we sought to determine whether potential AIDS vaccines can induce T-cell responses against the AIDS virus. Here we report that immunization of non-human primates, Macaca fascicularis (macaques), with recombinant vaccinia viruses that express LAV envelope glycoproteins gp41 and gp110 results not only in the production of antibodies against the LAV envelope antigens but also in the generation of T-cells that proliferate and produce the lymphokine interleukin-2 (IL-2), in response to stimulation with purified LAV. We believe this is the first report demonstrating T-cell-mediated immunity to the virus that causes AIDS.  相似文献   

14.
Ebola virus entry requires the cholesterol transporter Niemann-Pick C1   总被引:1,自引:0,他引:1  
Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.  相似文献   

15.
The development of a vaccine to provide protective immunity to human immunodeficiency virus type 1 (HIV-1), the virus causing AIDS, would be the most practical method to control its spread. Subunit vaccines consisting of virus envelope glycoproteins, produced by recombinant DNA technology, are effective in preventing viral infections. We have now used this approach in the development of a candidate AIDS vaccine. Chimpanzees were immunized with recombinant forms of the HIV-1 glycoproteins gp120 and gp160 produced in Chinese hamster ovary cells, and then challenged with HIV-1. The control and the two animals immunized with the gp160 variant became infected within 7 weeks of challenge. The two animals immunized with the gp120 variant have shown no signs of infection after more than 6 months. These studies demonstrate that recombinant gp120, formulated in an adjuvant approved for human use, can elicit protective immunity against a homologous strain of HIV-1.  相似文献   

16.
Hepatitis C virus (HCV) is a human pathogen affecting nearly 3% of the world's population. Chronic infections can lead to cirrhosis and liver cancer. The RNA replication machine of HCV is a multi-subunit membrane-associated complex. The non-structural protein NS5A is an active component of HCV replicase, as well as a pivotal regulator of replication and a modulator of cellular processes ranging from innate immunity to dysregulated cell growth. NS5A is a large phosphoprotein (56-58 kDa) with an amphipathic alpha-helix at its amino terminus that promotes membrane association. After this helix region, NS5A is organized into three domains. The N-terminal domain (domain I) coordinates a single zinc atom per protein molecule. Mutations disrupting either the membrane anchor or zinc binding of NS5A are lethal for RNA replication. However, probing the role of NS5A in replication has been hampered by a lack of structural information about this multifunctional protein. Here we report the structure of NS5A domain I at 2.5-A resolution, which contains a novel fold, a new zinc-coordination motif and a disulphide bond. We use molecular surface analysis to suggest the location of protein-, RNA- and membrane-interaction sites.  相似文献   

17.
An important aspect of the pathophysiology of human immunodeficiency virus type-1 (HIV-1) infection is the ability of the virus to replicate in non-dividing cells. HIV-1 matrix (MA), the amino-terminal domain of the Pr55 gag polyprotein (Pr55), bears a nuclear localization signal that promotes localization of the viral preintegration complex to the nucleus of non-dividing cells following virus entry. However, late during infection, MA, as part of Pr55, directs unspliced viral RNA to the plasma membrane, the site of virus assembly. How MA can mediate these two opposing targeting functions is not understood. Here we demonstrate that MA has a previously undescribed nuclear export activity. Although MA lacks the canonical leucine-rich nuclear export signal, nuclear export is mediated through the conserved Crm1p pathway and functions in both mammalian cells and yeast. A mutation that disrupts the MA nuclear export signal (MA-M4) mislocalizes Pr55 and genomic viral RNA to the nucleus, thereby severely impairing viral replication. Furthermore, we show that MA-M4 can act in a dominant-negative fashion to mislocalize genomic viral RNA even in the presence of wild-type MA. We conclude that the MA nuclear export signal is required to counteract the MA nuclear localization signal, thus ensuring the cytoplasmic availability of the components required for virion assembly.  相似文献   

18.
Hepatitis C virus (HCV) infection is a serious cause of chronic liver disease worldwide with more than 170 million infected individuals at risk of developing significant morbidity and mortality. Current interferon-based therapies are suboptimal especially in patients infected with HCV genotype 1, and they are poorly tolerated, highlighting the unmet medical need for new therapeutics. The HCV-encoded NS3 protease is essential for viral replication and has long been considered an attractive target for therapeutic intervention in HCV-infected patients. Here we identify a class of specific and potent NS3 protease inhibitors and report the evaluation of BILN 2061, a small molecule inhibitor biologically available through oral ingestion and the first of its class in human trials. Administration of BILN 2061 to patients infected with HCV genotype 1 for 2 days resulted in an impressive reduction of HCV RNA plasma levels, and established proof-of-concept in humans for an HCV NS3 protease inhibitor. Our results further illustrate the potential of the viral-enzyme-targeted drug discovery approach for the development of new HCV therapeutics.  相似文献   

19.
S W Gollins  J S Porterfield 《Nature》1986,321(6067):244-246
Despite the considerable research that has been carried out into viral neutralization by antiviral antibody, its mechanisms remain poorly understood. Cases have been reported in which antiviral antibody can inhibit viral replication without inhibiting the binding and uptake of virus by susceptible cells. It has been shown that many enveloped viruses enter their target cells by endocytosis and are subsequently located in cellular compartments of increasing acidity. With several enveloped viruses this acidic pH can catalyse a fusion reaction between the membrane of the virus particle and that of a prelysosomal endosome, thus enabling the viral core to enter the cytosol and replication to commence. We have recently demonstrated that such an endosomal fusion event at mild acidic pH is involved in the entry pathway of the enveloped flavivirus, West Nile virus (WNV), into macrophages. We now show that antiviral antibody can neutralize WNV by inhibiting this intraendosomal acid-catalysed fusion step and we speculate on possible implications for the future design of antiviral vaccines.  相似文献   

20.
Yang ZY  Kong WP  Huang Y  Roberts A  Murphy BR  Subbarao K  Nabel GJ 《Nature》2004,428(6982):561-564
Public health measures have successfully identified and contained outbreaks of the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), but concerns remain over the possibility of future recurrences. Finding a vaccine for this virus therefore remains a high priority. Here, we show that a DNA vaccine encoding the spike (S) glycoprotein of the SARS-CoV induces T cell and neutralizing antibody responses, as well as protective immunity, in a mouse model. Alternative forms of S were analysed by DNA immunization. These expression vectors induced robust immune responses mediated by CD4 and CD8 cells, as well as significant antibody titres, measured by enzyme-linked immunosorbent assay. Moreover, antibody responses in mice vaccinated with an expression vector encoding a form of S that includes its transmembrane domain elicited neutralizing antibodies. Viral replication was reduced by more than six orders of magnitude in the lungs of mice vaccinated with these S plasmid DNA expression vectors, and protection was mediated by a humoral but not a T-cell-dependent immune mechanism. Gene-based vaccination for the SARS-CoV elicits effective immune responses that generate protective immunity in an animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号