首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
M Chinkers  S Cohen 《Nature》1981,290(5806):516-519
Transformation by several RNA tumour viruses seems to be mediated by virally coded protein kinases which specifically phosphorylate tyrosine. A tyrosine-specific protein kinase also seems to be involved in the mitogenic action of epidermal growth factor (EGF). This EGF-stimulated kinase activity is closely associated with the EGF receptor, with which it copurifies during EGF-affinity chromatography. Because both the virus- and EGF-stimulated tyrosine kinases may be involved in stimulation of cell growth, and because the viral kinases may be antigenically related to normal cell proteins, we examined the interaction of antibodies to viral tyrosine kinases with the affinity-purified EGF receptor-kinase preparation. We report here that the receptor-kinase specifically phosphorylates antibodies directed against the transforming protein kinase pp60src of Rous sarcoma virus. However, none of these antibodies, including those which cross-react with the normal cellular homologue of pp60src (pp60sarc), precipitate the receptor-kinase. These results suggest that the EGF receptor-kinase is related to, but probably not identical with, pp60sarc.  相似文献   

5.
M S Cheah  T J Ley  S R Tronick  K C Robbins 《Nature》1986,319(6050):238-240
  相似文献   

6.
C Ellis  M Moran  F McCormick  T Pawson 《Nature》1990,343(6256):377-381
The critical pathways through which protein-tyrosine kinases induce cellular proliferation and malignant transformation are not well defined. As microinjection of antibodies against p21ras can block the biological effects of both normal and oncogenic tyrosine kinases, it is likely that they require functional p21ras to transmit their mitogenic signals. No biochemical link has been established, however, between tyrosine kinases and p21ras. We have identified a non-catalytic domain of cytoplasmic tyrosine kinases, SH2, that regulates the activity and specificity of the kinase domain. The presence of two adjacent SH2 domains in the p21ras GTPase-activating protein (GAP) indicates that GAP might interact directly with tyrosine kinases. Here we show that GAP, and two co-precipitating proteins of relative molecular masses 62,000 and 190,000 (p62 and p190) are phosphorylated on tyrosine in cells that have been transformed by cytoplasmic and receptor-like tyrosine kinases. The phosphorylation of these polypeptides correlates with transformation in cells expressing inducible forms of the v-src or v-fps encoded tyrosine kinases. Furthermore, GAP, p62 and p190 are also rapidly phosphorylated on tyrosine in fibroblasts stimulated with epidermal growth factor. Our results suggest a mechanism by which tyrosine kinases might modify p21ras function, and implicate GAP and its associated proteins as targets of both oncoproteins and normal growth factor receptors with tyrosine kinase activity. These data support the idea that SH2 sequences direct the interactions of cytoplasmic proteins involved in signal transduction.  相似文献   

7.
The mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region. These shc gene products (Shc) are transforming when overexpressed in fibroblasts. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated Shc proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC12 cells. These results suggest that Shc tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.  相似文献   

8.
J C Walker  R Zhang 《Nature》1990,345(6277):743-746
The protein kinase family of enzymes mediates the responses of eukaryotic cells to both inter- and intracellular signals. These enzymes are either serine/threonine-specific or tyrosine-specific. Many of the latter are transmembrane receptors and are important in transduction of extracellular signals across the plasma membrane, whereas few examples of receptor serine kinases have been reported. We have now identified a complementary DNA clone from Zea mays (L.) encoding a putative serine/threonine-specific protein kinase structurally related to the receptor tyrosine kinases. This structural similarity is evidence for a previously undescribed class of transmembrane receptor in higher plants likely to be involved in signal reception and transduction. Furthermore, the catalytic domain of this protein kinase is linked through a transmembrane domain to an extracellular domain similar to that of glycoproteins encoded in the self-incompatibility locus of Brassica which are involved in the self-recognition system between pollen and stigma.  相似文献   

9.
42,000-molecular weight EGF receptor has protein kinase activity   总被引:1,自引:0,他引:1  
M Basu  R Biswas  M Das 《Nature》1984,311(5985):477-480
The epidermal growth factor (EGF) receptor and other growth factor receptors have been shown to possess tyrosine-specific protein kinase activity. Before the demonstration of kinase activity in growth factor receptors, tyrosine kinases of molecular weight (MW) 60,000 (60K) were found to be encoded by the src oncogene and other oncogenes related to src. Our earlier work on intracellular processing of the EGF receptor, a 170,000-MW polypeptide, provided evidence for proteolytic separation of well defined structural domains, and suggested to us the possibility of separating functional domains by limited proteolysis. The isolation of such kinase domains should facilitate comparison of the receptor/kinase with other well characterized kinases including those of oncogene origin. We report here the identification of a catalytically functional 42K kinase derived proteolytically from the isolated human EGF receptor. This fragment, comparable in size to pp60src, carries the kinase ATP-binding site, and functions catalytically even after detachment from the EGF-binding site and the major autophosphorylation region.  相似文献   

10.
Y Ben-Neriah  A R Bauskin 《Nature》1988,333(6174):672-676
Tyrosine-specific phosphorylation of proteins is a key to the control of diverse pathways leading to cell growth and differentiation. The protein-tyrosine kinases described to date are either transmembrane proteins having an extracellular ligand binding domain or cytoplasmic proteins related to the v-src oncogene. Most of these proteins are expressed in a wide variety of cells and tissues; few are tissue-specific. Previous studies have suggested that lymphokines could mediate haematopoietic cell survival through their action on glucose transport, regulated in some cells through the protein-tyrosine kinase activity of the insulin receptor. We have investigated the possibility that insulin receptor-like genes are expressed specifically in haematopoietic cells. Using the insulin receptor-related avian sarcoma oncogene v-ros as a probe, we have isolated and characterized the complementary DNA of a novel gene, ltk (leukocyte tyrosine kinase). The ltk gene is expressed mainly in leukocytes, is related to several tyrosine kinase receptor genes of the insulin receptor family and has unique structural properties: it apparently encodes a transmembrane protein devoid of an extracellular domain. Two candidate ltk proteins have been identified with antibodies in the mouse thymus, and have properties indicating that they are integral membrane proteins. These features suggest that ltk could be a signal transduction subunit for one or several of the haematopoietic receptors.  相似文献   

11.
12.
Anti-pp60src antibodies are substrates for EGF-stimulated protein kinase   总被引:10,自引:0,他引:10  
J E Kudlow  J E Buss  G N Gill 《Nature》1981,290(5806):519-521
Epidermal growth factor (EGF) stimulates phosphorylation of its own receptor at a tyrosine residue. Similarly, the viral gene product pp60src, which is responsible for cellular transformation by avian sarcoma virus (ASV), phosphorylates itself and immunoglobulin directed against pp60src at tyrosine residues. This unusual site of phosphorylation catalysed by two membrane-associated protein kinases involved in growth control prompted us to study the immunological relatedness of the EGF-stimulated protein kinase and the pp60src. Using anti-pp60src antisera, we attempted to immunoprecipitate the EGF-stimulated protein kinase solubilized from plasma membranes. We report here that neither the EGF-stimulated kinase nor the EGF receptor were immunoprecipitable by anti-pp60src sera. However, anti-pp60src IgG served as a specific substrate for the EGF-stimulated kinase, suggesting a close similarity between the EGF-stimulated kinase and pp60src.  相似文献   

13.
T Hunter  N Ling  J A Cooper 《Nature》1984,311(5985):480-483
The receptor for epidermal growth factor (EGF) is a 170,000-180,000 molecular weight single-chain glycoprotein of 1,186 amino acids. Its sequence suggests that it has an external EGF-binding domain, formed by the NH2-terminal 621 amino acids, linked to a cytoplasmic region by a single membrane-spanning segment. In the cytoplasmic portion, starting 50 residues from the membrane, there is a 250-residue stretch similar to the catalytic domain of the src gene family of retroviral tyrosine protein kinases, and, indeed, a tyrosine-specific protein kinase activity intrinsic to the receptor is stimulated when EGF is bound. Increased tyrosine phosphorylation of cellular proteins, detected in A431 cells following EGF binding, may be important in the mitogenic signal pathway. Tumour promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), counteract this increase, as well as causing loss of a high affinity class of EGF binding sites. The major receptor for TPA has been identified as the serine/threonine-specific Ca2+/phospholipid-dependent diacylglycerol-activated protein kinase, protein kinase C. By substituting for diacylglycerol, TPA stimulates protein kinase C. Protein kinase C phosphorylates purified EGF receptor at specific sites, and this reduces EGF-stimulated tyrosine protein kinase activity. TPA treatment of A431 cells increases serine and threonine phosphorylation of the EGF receptor at the same sites, which suggests that the reduction of EGF receptor kinase activity in TPA-treated cells is a consequence of the receptor's phosphorylation by the kinase. We have attempted to identify these phosphorylation sites and show here that protein kinase C phosphorylates threonine 654 in the human EGF receptor. This threonine is in a very basic sequence nine residues from the cytoplasmic face of the plasma membrane in the region before the protein kinase domain; it is thus in a position to modulate signalling between this internal domain and the external EGF-binding domain.  相似文献   

14.
Phosphorylation of c-jun mediated by MAP kinases   总被引:142,自引:0,他引:142  
  相似文献   

15.
N Gómez  P Cohen 《Nature》1991,353(6340):170-173
Mitogen activated protein (MAP) kinases (MAPKs) are a family of protein-serine/threonine kinases activated as an early intracellular response to a variety of hormones and growth factors. They are unique in requiring both serine/threonine and tyrosine phosphorylation to become active and are the only examples of protein-serine/threonine kinases activated by tyrosine phosphorylation. Nerve growth factor (NGF) promotes differentiation of phaeochromocytoma (PC12) cells, which respond by conversion within hours from a chromaffin-like to a sympathetic neuron-like phenotype. NGF stimulation of PC12 cells increases the activity of two protein kinases by greater than 20-fold within minutes, both strikingly similar to MAPKs. They are inactivated by either protein-tyrosine phosphatases or the protein-serine/threonine phosphatase termed protein phosphatase 2A (ref. 8), they activate protein S6 kinase-II (refs 9, 10), and they phosphorylate identical threonine residues on myelin basic protein (our unpublished results) to those phosphorylated by other MAPKs. Immunological data indicate that these protein kinases, termed peak-I and peak-II (Fig. 1a) are probably ERK2 and ERK1, respectively, two widely expressed MAPK isoforms. Here we identify the 'MAP kinase kinases' (MAPKKs) in PC12 cells which are activated by NGF and report that MAPKKs are dependent on serine/threonine phosphorylation for activity and promote phosphorylation of serine/threonine and tyrosine residues on MAPKs.  相似文献   

16.
W C Forrester  M Dell  E Perens  G Garriga 《Nature》1999,400(6747):881-885
Ror kinases are a family of orphan receptors with tyrosine kinase activity that are related to muscle specific kinase (MuSK), a receptor tyrosine kinase that assembles acetylcholine receptors at the neuromuscular junction. Although the functions of Ror kinases are unknown, similarities between Ror and MuSK kinases have led to speculation that Ror kinases regulate synaptic development. Here we show that the Caenorhabditis elegans gene cam-1 encodes a member of the Ror kinase family that guides migrating cells and orients the polarity of asymmetric cell divisions and axon outgrowth. We find that tyrosine kinase activity is required for some of the functions of CAM-1, but not for its role in cell migration. CAM-1 is expressed in cells that require its function, and acts cell autonomously in migrating neurons. Overexpression and loss of cam-1 function result in reciprocal cell-migration phenotypes, indicating that levels of CAM-1 influence the final positions of migrating cells. Our results raise the possibility that Ror kinases regulate cell motility and asymmetric cell division in organisms as diverse as nematodes and mammals.  相似文献   

17.
The human met oncogene is related to the tyrosine kinase oncogenes   总被引:3,自引:0,他引:3  
  相似文献   

18.
Epidermal growth factor-dependent phosphorylation of lipocortin   总被引:35,自引:0,他引:35  
R B Pepinsky  L K Sinclair 《Nature》1986,321(6065):81-84
Lipocortin-like proteins are a family of steroid-induced inhibitors of phospholipase activity with potential anti-inflammatory activity. Related proteins have been detected in a variety of tissues and species. The best characterized form is a protein of relative molecular mass (Mr) approximately 40,000 (40K), which is phosphorylated in vivo by protein tyrosine kinases and by protein serine-threonine kinases. It has been proposed that the phospholipase inhibitory activity of lipocortin can be regulated by its phosphorylation. In the A431 cell line, a protein of approximately 35K is phosphorylated by the protein tyrosine kinase activity of the epidermal growth factor (EGF) receptor. Here we report that human lipocortin is phosphorylated near its amino terminus by the EGF receptor/kinase. By peptide mapping and immunological analyses, we show that lipocortin and the endogenous 35K substrate for the EGF receptor/kinase from A431 cells are the same protein.  相似文献   

19.
J L Guan  D Shalloway 《Nature》1992,358(6388):690-692
Increasing evidence indicates that the integrin family of cell adhesion receptors can transduce biochemical signals from the extracellular matrix to the cell interior to modulate cell growth and differentiation. We have shown that integrin/ligand interactions can trigger tyrosine phosphorylation of a protein of M(r) 120,000 (pp120), so it is possible that signal transduction by integrins might involve activation of intracellular protein tyrosine kinases as an early event in cell binding to the extracellular matrix. Here we report that pp120 is identical to the focal adhesion-associated protein tyrosine kinase pp125FAK (refs 3, 4). We show that tyrosine phosphorylation of this protein is modulated both by cell adhesion and transformation by pp60v-src, and that these changes in phosphorylation are correlated with increased pp125FAK tyrosine kinase activity. A model is proposed to relate these findings to the molecular basis of anchorage-independent growth of transformed cells.  相似文献   

20.
Fibroblastic cultures derived from normal human tissues undergo a finite number of population doublings when serially subcultivated in vitro (see refs 1, 2 for reviews). Epidermal growth factor (EGF) serves as a mitogen for early doubling level cultures of the human fetal lung-derived cell strain, WI-38, under serum-free conditions. The ability of cells from late doubling level cultures to respond mitogenically to EGF is lost, however, despite undiminished binding of EGF throughout the replicative lifespan. The ultimate effects of EGF, that is DNA synthesis and mitosis (see ref. 4 for review), occur after a sequence of events initiated by binding of ligand to specific cellular receptors. The receptor for EGF has been characterized as a 145,000-165,000 (145 K-165 K) molecular weight doublet, and, like the receptors for platelet-derived growth factor and insulin, and the transforming proteins of certain of the RNA tumour viruses, is a tyrosine-specific protein kinase with autophosphorylating activity. Moreover, several of the cellular target molecules of tyrosine phosphorylation have been found to be substrates for two or more of these kinases. The hypothesis that tyrosine phosphorylation underlies a common mechanism of growth control prompted us to ask whether the loss of responsiveness to EGF by late doubling level WI-38 cells is accompanied by altered expression of the EGF receptor, and specifically whether changes occur in the ability of receptors from populations of cells of various in vitro ages to catalyse tyrosine autophosphorylation. We show here that autophosphorylating activity is absent from the EGF receptor of cells which have lost their mitogenic responsiveness to EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号