首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
Zheng X  Pontes O  Zhu J  Miki D  Zhang F  Li WX  Iida K  Kapoor A  Pikaard CS  Zhu JK 《Nature》2008,455(7217):1259-1262
  相似文献   

4.
高活力水稻种子萌发过程中DNA甲基化变化的MSAP分析   总被引:2,自引:0,他引:2  
DNA甲基化是基因组DNA的一种主要表观遗传修饰形式,是调节基因组功能的重要手段。本实验采用MSAP方法分析,旨在研究高活力水稻种子萌发过程中的甲基化与去甲基化变化的规律,为研究种子的老化机理和种子的长期保存提供依据。结果表明:水稻种子萌发过程中,同时发生了甲基化与去甲基化作用,且去甲基化作用先于甲基化作用发生。发生去甲基化可能与基因活化有关,发生甲基化可能与组织特异性有关。  相似文献   

5.
DNMT1 and DNMT3b cooperate to silence genes in human cancer cells   总被引:81,自引:0,他引:81  
Inactivation of tumour suppressor genes is central to the development of all common forms of human cancer. This inactivation often results from epigenetic silencing associated with hypermethylation rather than intragenic mutations. In human cells, the mechanisms underlying locus-specific or global methylation patterns remain unclear. The prototypic DNA methyltransferase, Dnmt1, accounts for most methylation in mouse cells, but human cancer cells lacking DNMT1 retain significant genomic methylation and associated gene silencing. We disrupted the human DNMT3b gene in a colorectal cancer cell line. This deletion reduced global DNA methylation by less than 3%. Surprisingly, however, genetic disruption of both DNMT1 and DNMT3b nearly eliminated methyltransferase activity, and reduced genomic DNA methylation by greater than 95%. These marked changes resulted in demethylation of repeated sequences, loss of insulin-like growth factor II (IGF2) imprinting, abrogation of silencing of the tumour suppressor gene p16INK4a, and growth suppression. Here we demonstrate that two enzymes cooperatively maintain DNA methylation and gene silencing in human cancer cells, and provide compelling evidence that such methylation is essential for optimal neoplastic proliferation.  相似文献   

6.
Reik W 《Nature》2007,447(7143):425-432
  相似文献   

7.
Transient cyclical methylation of promoter DNA   总被引:3,自引:0,他引:3  
  相似文献   

8.
A histone H3 methyltransferase controls DNA methylation in Neurospora crassa.   总被引:26,自引:0,他引:26  
H Tamaru  E U Selker 《Nature》2001,414(6861):277-283
DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. We have demonstrated previously that dim-2 encodes a DNA methyltransferase that is responsible for all known cytosine methylation in Neurospora crassa. Here we report that another Neurospora gene, dim-5, is required for DNA methylation, as well as for normal growth and full fertility. We mapped dim-5 and identified it by transformation with a candidate gene. The mutant has a nonsense mutation in a SET domain of a gene related to histone methyltransferases that are involved in heterochromatin formation in other organisms. Transformation of a wild-type strain with a segment of dim-5 reactivated a silenced hph gene, apparently by 'quelling' of dim-5. We demonstrate that recombinant DIM-5 protein specifically methylates histone H3 and that replacement of lysine 9 in histone H3 with either a leucine or an arginine phenocopies the dim-5 mutation. We conclude that DNA methylation depends on histone methylation.  相似文献   

9.
Arita K  Ariyoshi M  Tochio H  Nakamura Y  Shirakawa M 《Nature》2008,455(7214):818-821
DNA methylation of CpG dinucleotides is an important epigenetic modification of mammalian genomes and is essential for the regulation of chromatin structure, of gene expression and of genome stability. Differences in DNA methylation patterns underlie a wide range of biological processes, such as genomic imprinting, inactivation of the X chromosome, embryogenesis, and carcinogenesis. Inheritance of the epigenetic methylation pattern is mediated by the enzyme DNA methyltransferase 1 (Dnmt1), which methylates newly synthesized CpG sequences during DNA replication, depending on the methylation status of the template strands. The protein UHRF1 (also known as Np95 and ICBP90) recognizes hemi-methylation sites via a SET and RING-associated (SRA) domain and directs Dnmt1 to these sites. Here we report the crystal structures of the SRA domain in free and hemi-methylated DNA-bound states. The SRA domain folds into a globular structure with a basic concave surface formed by highly conserved residues. Binding of DNA to the concave surface causes a loop and an amino-terminal tail of the SRA domain to fold into DNA interfaces at the major and minor grooves of the methylation site. In contrast to fully methylated CpG sites recognized by the methyl-CpG-binding domain, the methylcytosine base at the hemi-methylated site is flipped out of the DNA helix in the SRA-DNA complex and fits tightly into a protein pocket on the concave surface. The complex structure suggests that the successive flip out of the pre-existing methylated cytosine and the target cytosine to be methylated is associated with the coordinated transfer of the hemi-methylated CpG site from UHRF1 to Dnmt1.  相似文献   

10.
11.
The Polycomb group protein EZH2 directly controls DNA methylation   总被引:1,自引:0,他引:1  
The establishment and maintenance of epigenetic gene silencing is fundamental to cell determination and function. The essential epigenetic systems involved in heritable repression of gene activity are the Polycomb group (PcG) proteins and the DNA methylation systems. Here we show that the corresponding silencing pathways are mechanistically linked. We find that the PcG protein EZH2 (Enhancer of Zeste homolog 2) interacts-within the context of the Polycomb repressive complexes 2 and 3 (PRC2/3)-with DNA methyltransferases (DNMTs) and associates with DNMT activity in vivo. Chromatin immunoprecipitations indicate that binding of DNMTs to several EZH2-repressed genes depends on the presence of EZH2. Furthermore, we show by bisulphite genomic sequencing that EZH2 is required for DNA methylation of EZH2-target promoters. Our results suggest that EZH2 serves as a recruitment platform for DNA methyltransferases, thus highlighting a previously unrecognized direct connection between two key epigenetic repression systems.  相似文献   

12.
DNA甲基化是表遗传学上研究最深入的一种机制,是一种酶介导的化学修饰过程,在DNA的某些碱基上增加一个甲基.在人类的肿瘤中都可以发现不同程度的DNA异常甲基化现象.介绍DNA甲基化在基因表达中的作用及其抑制基因转录、表达的机理,尤其发生在抑癌基因CpG岛和其他相关基因的甲基化异常与肿瘤发生、演进的关系,甲基化的检测方法以及去甲基化在肿瘤治疗方面的应用前景.  相似文献   

13.
Demethylation of CpG islands in embryonic cells   总被引:16,自引:0,他引:16  
D Frank  I Keshet  M Shani  A Levine  A Razin  H Cedar 《Nature》1991,351(6323):239-241
DNA in differentiated somatic cells has a fixed pattern of methylation, which is faithfully copied after replication. By contrast, the methylation patterns of many tissue-specific and some housekeeping genes are altered during normal development. This modification of DNA methylation in the embryo has also been observed in transgenic mice and in transfection experiments. Here we report the fate in mice of an in vitro-methylated adenine phosphoribosyltransferase transgene. The entire 5' CpG island region became demethylated, whereas the 3' end of the gene remained modified and was even methylated de novo at additional sites. Transfection experiments in vitro show that the demethylation is rapid, is specific for embryonic cell-types and affects a variety of different CpG island sequences. This suggests that gene sequences can be recognized in the early embryo and imprinted with the correct methylation pattern through a combination of demethylation and de novo methylation.  相似文献   

14.
15.
There are several kinds of epigenetic networks in the human body including the cell differentiation epigenetic network(DiEN) and the host adaptation epigenetic network(AdEN).DiEN networks are static and cell/tissue-specific.AdEN networks are variable and dependent upon environmental factors.DiEN and AdEN alterations can respectively serve as biomarkers for different kinds of diseases.Cancer is a consequence of accumulated pathophysiological adaptations of tissue stem cells to exposure of environmental carcinogens.Cancer cells are de-differentiated cells that obtain the capacity of unrestricted proliferation,local invasion,and distant migration/metastasis.Both DiEN and AdEN changes can be observed in cancer tissues.Alterations of DNA methylation are the most stable epigenetic modifications and can be sensitively detected in a small cell population.These advantages make DNA methylation the optimal biomarkers for detection of initiated cells in precancerous lesions and metastasis stem cells in cancer tissues.It has been proven that p16 methylation can be used as a diagnostic biomarker to determine malignant potential of epithelium dysplasia in many organs including the stomach.In a large-scale validation study on the DNA methylome of gastric carcinomas(GC),the methylation status of more than 90 CpG islands has been analyzed by DHPLC.Furthermore,GFRA1 demethylation and methylation of SRF and ZNF382 are frequent events during gastric carcinogenesis and consistently correlate to GC metastasis and overall survival of GC patients from China,Japan,and Korea,respectively.In a population study,it has been demonstrated that gradual increasing of plasma miR-211 and other miRNA levels may be an early risk predictor for GC development.  相似文献   

16.
Bell AC  Felsenfeld G 《Nature》2000,405(6785):482-485
The expression of the insulin-like growth factor 2 (Igf2) and H19 genes is imprinted. Although these neighbouring genes share an enhancer, H19 is expressed only from the maternal allele, and Igf2 only from the paternally inherited allele. A region of paternal-specific methylation upstream of H19 appears to be the site of an epigenetic mark that is required for the imprinting of these genes. A deletion within this region results in loss of imprinting of both H19 and Igf2 (ref. 5). Here we show that this methylated region contains an element that blocks enhancer activity. The activity of this element is dependent upon the vertebrate enhancer-blocking protein CTCF. Methylation of CpGs within the CTCF-binding sites eliminates binding of CTCF in vitro, and deletion of these sites results in loss of enhancer-blocking activity in vivo, thereby allowing gene expression. This CTCF-dependent enhancer-blocking element acts as an insulator. We suggest that it controls imprinting of Igf2. The activity of this insulator is restricted to the maternal allele by specific DNA methylation of the paternal allele. Our results reveal that DNA methylation can control gene expression by modulating enhancer access to the gene promoter through regulation of an enhancer boundary.  相似文献   

17.
18.
Wu H  D'Alessio AC  Ito S  Xia K  Wang Z  Cui K  Zhao K  Sun YE  Zhang Y 《Nature》2011,473(7347):389-393
  相似文献   

19.
Cancer is both a genetic and an epigenetic disease. Inactivation of tumour-suppressor genes by epigenetic changes is frequently observed in human cancers, particularly as a result of the modifications of histones and DNA methylation. It is therefore important to understand how these damaging changes might come about. By studying tumorigenesis in the Drosophila eye, here we identify two Polycomb group epigenetic silencers, Pipsqueak and Lola, that participate in this process. When coupled with overexpression of Delta, deregulation of the expression of Pipsqueak and Lola induces the formation of metastatic tumours. This phenotype depends on the histone-modifying enzymes Rpd3 (a histone deacetylase), Su(var)3-9 and E(z), as well as on the chromodomain protein Polycomb. Expression of the gene Retinoblastoma-family protein (Rbf) is downregulated in these tumours and, indeed, this downregulation is associated with DNA hypermethylation. Together, these results establish a mechanism that links the Notch-Delta pathway, epigenetic silencing pathways and cell-cycle control in the process of tumorigenesis.  相似文献   

20.
DNA甲基化或去甲基化,改变了DNA分子构象,导致某些重要基团的隐蔽或暴露,削弱或增强了DNA与蛋白质因子的结合能力,从而改变了基因表达.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号