首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
Summary The determination of neuronal fate in the developing cerebral cortex has been studied by tracking normal cell lineages in the cortex, and by testing the commitment of young cortical neurons to their normal fates. These studies together suggest that neuronal progenitors are multipotent during development and have the potential to produce neurons destined for many or all of the cortical layers. However, the laminar identity of an individual neuron appears to be specified through environmental interactions at the time of the cell's temrinal mitotic division, prior to its migration into the cortical plate.  相似文献   

2.
S K McConnell 《Experientia》1990,46(9):922-929
The determination of neuronal fate in the developing cerebral cortex has been studied by tracking normal cell lineages in the cortex, and by testing the commitment of young cortical neurons to their normal fates. These studies together suggest that neuronal progenitors are multipotent during development and have the potential to produce neurons destined for many or all of the cortical layers. However, the laminar identity of an individual neuron appears to be specified through environmental interactions at the time of the cell's terminal mitotic division, prior to its migration into the cortical plate.  相似文献   

3.
Defects in membrane trafficking and degradation are hallmarks of most, and maybe all, neurodegenerative disorders. Such defects typically result in the accumulation of undegraded proteins due to aberrant endosomal sorting, lysosomal degradation, or autophagy. The genetic or environmental cause of a specific disease may directly affect these membrane trafficking processes. Alternatively, changes in intracellular sorting and degradation can occur as cellular responses of degenerating neurons to unrelated primary defects such as insoluble protein aggregates or other neurotoxic insults. Importantly, altered membrane trafficking may contribute to the pathogenesis or indeed protect the neuron. The observation of dramatic changes to membrane trafficking thus comes with the challenging need to distinguish pathological from protective alterations. Here, we will review our current knowledge about the protective and destructive roles of membrane trafficking in neuronal maintenance and degeneration. In particular, we will first focus on the question of what type of membrane trafficking keeps healthy neurons alive in the first place. Next, we will discuss what alterations of membrane trafficking are known to occur in Alzheimer’s disease and other tauopathies, Parkinson’s disease, polyQ diseases, peripheral neuropathies, and lysosomal storage disorders. Combining the maintenance and degeneration viewpoints may yield insight into how to distinguish when membrane trafficking functions protectively or contributes to degeneration.  相似文献   

4.
Neurodegenerative disorders are characterized by the presence of inflammation in areas with neuronal cell death and a regional increase in iron that exceeds what occurs during normal aging. The inflammatory process accompanying the neuronal degeneration involves glial cells of the central nervous system (CNS) and monocytes of the circulation that migrate into the CNS while transforming into phagocytic macrophages. This review outlines the possible mechanisms responsible for deposition of iron in neurodegenerative disorders with a main emphasis on how iron-containing monocytes may migrate into the CNS, transform into macrophages, and die out subsequently to their phagocytosis of damaged and dying neuronal cells. The dying macrophages may in turn release their iron, which enters the pool of labile iron to catalytically promote formation of free-radical-mediated stress and oxidative damage to adjacent cells, including neurons. Healthy neurons may also chronically acquire iron from the extracellular space as another principle mechanism for oxidative stress-mediated damage. Pharmacological handling of monocyte migration into the CNS combined with chelators that neutralize the effects of extracellular iron occurring due to the release from dying macrophages as well as intraneuronal chelation may denote good possibilities for reducing the deleterious consequences of iron deposition in the CNS.  相似文献   

5.
Perinatal asphyxia (PA) is considered to lead to a variety of brain disorders including spasticity, epilepsy, mental retardation, and minimal brain disorder syndromes and may form the basis for psychiatric and neurodegenerative diseases later in life. We examined markers for neuronal transmission involved in the pathomechanisms of PA and candidates as mediators for long-term sequelae. We tested tyrosine hydroxylase (TH) and the vesicular monoamine transporter (VMAT) representing the monoaminergic system, the vesicular acetylcholine transporter (VAChT), and the excitatory amino acid carrier 1 (EAAC1), a neuronal subtype of the glutamate transporter, using immunohistochemistry on brain sections of rats subjected to graded PA. Three months following the asphyxiant insult immunoreactive (IR)-TH was decreased in striatum, hippocampus, thalamus, frontal cortex, and cerebellum; IR-VMAT was increased, and IR-VAChT was decreased in striatum. IR-EAAC1 glutamate transporter was increased in frontal cortex. The cholinergic, monoaminergic, and glutamatergic changes, still observed 3 months after the asphyxiant insult, may reflect their involvement in the pathomechanisms of PA and indicate mechanisms leading to long-term complications of PA. The variable consequences on the individual markers in several brain regions may be explained by specific susceptibility of cholinergic, monoaminergic, and glutamatergic neurons to the asphyxiant insult. Received 16 March 1999; received after revision 20 May 1999; accepted 8 July 1999  相似文献   

6.
Proper brain connectivity and neuronal transmission rely on the accurate assembly of neurotransmitter receptors, cell adhesion molecules and several other scaffolding and signaling proteins at synapses. Several new exciting findings point to an important role for the neuroligin family of adhesion molecules in synapse development and function. In this review, we summarize current knowledge of the structure of neuroligins and neurexins, their potential binding partners at the synapse. We also discuss their potential involvement in several aspects of synapse development, including induction, specificity and stabilization. The implication of neuroligins in cognitive disorders such as autism and mental retardation is also discussed. Received 6 February 2006; received after revision 17 March 2006; accepted 26 April 2006  相似文献   

7.
Normal development of the cerebral cortex is an important process for higher brain functions, such as language, and cognitive and social functions. Psychiatric disorders, such as schizophrenia and autism, are thought to develop owing to various dysfunctions occurring during the development of the cerebral cortex. Radial neuronal migration in the embryonic cerebral cortex is a complex process, which is achieved by strict control of cytoskeletal dynamics, and impairments in this process are suggested to cause various psychiatric disorders. Our recent findings indicate that radial neuronal migration as well as psychiatric behaviors is rescued by controlling microtubule stability during the embryonic stage. In this review, we outline the relationship between psychiatric disorders, such as schizophrenia and autism, and radial neuronal migration in the cerebral cortex by focusing on the cytoskeleton and centrosomes. New treatment strategies for psychiatric disorders will be discussed.  相似文献   

8.
Integrin antagonists   总被引:4,自引:0,他引:4  
Integrins are a family of cell surface glycoproteins that mediate numerous cell-cell and cell-matrix interactions and are involved in biological processes such as tissue morphogenesis, leukocyte recirculation and migration, wound healing, blood clotting and immune response. Aberrant cell adhesion has been implicated in the pathogenesis of several diseases, including a number of inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease and asthma, as well as cancer and coronary heart disease. As such integrins are seen as excellent targets for the development of therapeutic agents. This report begins with an examination of the structure of integrin molecules and their ligands and then goes on to review the current state of development of antiintegrin antagonists. Received 13 April 1999; received after revision 28 May 1999; accepted 28 May 1999  相似文献   

9.
Principles of neural cell migration   总被引:19,自引:0,他引:19  
Summary A basic property of immature neurons is their ability to change position from the place of their final mitotic division in proliferative centers of the developing brain to the specific positions they will occupy in a given structure of the adult nervous system. Proper acquisition of neuron position, attained through the process of active migration, ultimately affects a cell's morphology, synaptic connectivity and function. Although various classes of neurons may use different molecular cues to guide their migration to distant structures, a surface-mediated interaction between neighboring cells is considered essential for all types of migration. Disturbance of this cell-cell interaction may be important in several congenital and/or acquired brain abnormalities. The present article considers the basic mechanisms and principles of neuronal cell migration in the mammalian central nervous system.  相似文献   

10.
Intensive research in the last decade shows that the prototypic angiogenic factor vascular endothelial growth factor (VEGF) can have direct effects in neurons and modulate processes such as neuronal migration, axon outgrowth, axon guidance and neuronal survival. Depending on the neuronal cell type and the process, VEGF seems to exert these effects by signaling via different receptors. It is also becoming clear that other VEGF ligands such as VEGF-B, -C and -D can act in various neuronal cell types as well. Moreover, apart from playing a role in physiological conditions, VEGF and VEGF-B have been related to different neurological disorders. We give an update on how VEGF controls different processes during neurodevelopment as well as on its role in several neurodegenerative disorders. We also discuss recent findings demonstrating that other VEGF ligands influence processes such as neurogenesis and dendrite arborization and participate in neurodegeneration.  相似文献   

11.
Summary Our laboratory has developed an in vitro model system in which glial-guided neuronal migration can be observed in real time. Cerebellar granule neurons migrate on astroglial fibers by apposing their cell soma against the glial arm, forming a specialized migration junction, and extending a motile leading process in the direction of migration. In vitro assays indicate that the neuronal antigen astrotactin functions as a neuron-glia ligand, and is likely to play a role in the movement of neurons along glial fibers. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on heterotypic glial processes with a cytology, speed and mode of movement identical to that of neuronal migration on homotypic glial fibers, suggesting that glial fibers provide a permissive pathway for neuronal migration in developing brain. In vivo analyses of developing cerebellum demonstrate a close coordination of afferent axon ingrowth relative to target cell migration. These studies indicate that climbing fibers contact immature Purkinje neurons during the migration and settling of Purkinje cells, implicating a role for afferents in the termination of migration.  相似文献   

12.
Mechanisms of glial-guided neuronal migration in vitro and in vivo   总被引:6,自引:0,他引:6  
M E Hatten  C A Mason 《Experientia》1990,46(9):907-916
Our laboratory has developed an in vitro model system in which glial-guided neuronal migration can be observed in real time. Cerebellar granule neurons migrate on astroglial fibers by apposing their cell soma against the glial arm, forming a specialized migration junction, and extending a motile leading process in the direction of migration. In vitro assays indicate that the neuronal antigen astrotactin functions as a neuron-glia ligand, and is likely to play a role in the movement of neurons along glial fibers. In heterotypic recombinations of neurons and glia from mouse cerebellum and rat hippocampus, neurons migrate on heterotypic glial processes with a cytology, speed and mode of movement identical to that of neuronal migration on homotypic glial fibers, suggesting that glial fibers provide a permissive pathway for neuronal migration in developing brain. In vivo analyses of developing cerebellum demonstrate a close coordination of afferent axon ingrowth relative to target cell migration. These studies indicate that climbing fibers contact immature Purkinje neurons during the migration and settling of Purkinje cells, implicating a role for afferents in the termination of migration.  相似文献   

13.
Neurotrophins and neuronal differentiation in the central nervous system   总被引:10,自引:0,他引:10  
The central nervous system requires the proper formation of exquisitely precise circuits to function properly. These neuronal circuits are assembled during development by the formation of synaptic connections between hundreds of thousands of differentiating neurons. For these circuits to form correctly, neurons must elaborate precisely patterned axonal and dendritic arbors. Although the cellular and molecular mechanisms that guide neuronal differentiation and formation of connections remain mostly unknown, the neurotrophins have emerged recently as attractive candidates for regulating neuronal differentiation in the developing brain. The experiments reviewed here provide strong support for a bifunctional role for the neurotrophins in axonal and dendritic growth and are consistent with the exciting possibility that the neurotrophins might mediate activity-dependent synaptic plasticity.  相似文献   

14.
α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors are one type of ionotropic glutamate receptor involved in rapid excitatory synaptic transmission. AMPA receptors have been increasingly implicated in long-term potentiation, and recent evidence suggests that they may play a role in disorders affecting the nervous system. The finding that early in postnatal development AMPA receptors are not expressed has lately been the focus of much attention. Resolving the factors involved in AMPA receptor expression suggests that their induction is a developmentally regulated process with the possibility that alterations in receptor expression may be correlated with pathology in neurological disorders. This paper provides an overview of factors involved in AMPA receptor induction as well as of their role in plasticity and neuronal pathologies. Received 5 December 2000; received after revision 12 January 2001; accepted 2 February 2001  相似文献   

15.
Extracellular matrix and neuronal movement   总被引:1,自引:0,他引:1  
Summary During brain development, both neuronal migration and axon guidance are influenced by extracellular matrix molecules present in the environment of the migrating neuronal cell bodies and nerve fibers. Glial laminin is an extracellular matrix protein which these early brain cells preferentially attach to. Extracellular glycosaminoglycans are suggested to function in restricting neuronal cell bodies and axons from certain brain areas. Since laminin is deposited along the radial glial fibers and along the developing nerve pathways in punctate form, the punctate assemblies may be one of the key factors in routing the developing neurons in vivo. This review discusses the role of laminin in neuronal movement given the present concept of the extracellular matrix molecules and their proposed interactions.  相似文献   

16.
Extracellular matrix and neuronal movement   总被引:3,自引:0,他引:3  
P Liesi 《Experientia》1990,46(9):900-907
During brain development, both neuronal migration and axon guidance are influenced by extracellular matrix molecules present in the environment of the migrating neuronal cell bodies and nerve fibers. Glial laminin is an extracellular matrix protein which these early brain cells preferentially attach to. Extracellular glycosaminoglycans are suggested to function in restricting neuronal cell bodies and axons from certain brain areas. Since laminin is deposited along the radial glial fibers and along the developing nerve pathways in punctate form, the punctate assemblies may be one of the key factors in routing the developing neurons in vivo. This review discusses the role of laminin in neuronal movement given the present concept of the extracellular matrix molecules and their proposed interactions.  相似文献   

17.
Reelin-Disabled-1 (Dab1) signaling has a well-established role in regulating neuronal migration during brain development. Binding of Reelin to its receptors induces Dab1 tyrosine phosphorylation. Tyrosine-phosphorylated Dab1 recruits a wide range of SH2 domain-containing proteins and activates multiple signaling cascades, resulting in cytoskeleton remodeling and precise neuronal positioning. In this review, we summarize recent progress in the Reelin-Dab1 signaling field. We focus on Dab1 alternative splicing as a mechanism for modulating the Reelin signal in developing brain. We suggest that correct positioning of neurons in the developing brain is at least partly controlled by alternatively-spliced Dab1 isoforms that differ in the number and type of tyrosine phosphorylation motifs that they contain. We propose a model whereby different subsets of SH2 domain-containing proteins are activated by different Dab1 isoforms, resulting in coordinated migration of neurons.  相似文献   

18.
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.  相似文献   

19.
Chronic gestational exposure to ethanol has profound adverse effects on brain development. In this regard, studies using in vitro models of ethanol exposure demonstrated impaired insulin signaling mechanisms associated with increased apoptosis and reduced mitochondrial function in neuronal cells. To determine the relevance of these findings to fetal alcohol syndrome, we examined mechanisms of insulin-stimulated neuronal survival and mitochondrial function using a rat model of chronic gestational exposure to ethanol. In ethanol-exposed pups, the cerebellar hemispheres were hypoplastic and exhibited increased apoptosis. Isolated cerebellar neurons were cultured to selectively evaluate insulin responsiveness. Gestational exposure to ethanol inhibited insulin-stimulated neuronal viability, mitochondrial function, Calcein AM retention (membrane integrity), and GAPDH expression, and increased dihydrorosamine fluorescence (oxidative stress) and pro-apoptosis gene expression (p53, Fas-receptor, and Fas-ligand). In addition, neuronal cultures generated from ethanol-exposed pups had reduced levels of insulin-stimulated Akt, GSK-3β, and BAD phosphorylation, and increased levels of non-phosphorylated (activated) GSK-3β and BAD protein expression. The aggregate results suggest that insulin-stimulated central nervous system neuronal survival mechanisms are significantly impaired by chronic gestational exposure to ethanol, and that the abnormalities in insulin signaling mechanisms persist in the early postnatal period, which is critical for brain development. Received 21 January 2002; received after revision 28 February 2002; accepted 25 March 2002  相似文献   

20.
Apolipoprotein E (apoE) ɛ4 allele is a genetic risk factor for late-onset familial and sporadic Alzheimer’s disease (AD). In the central nervous system, apoE is secreted mainly by astrocytes as a constituent of high-density lipoproteins. A recent study using apoE knockout mice provided strong evidence that apoE promotes cerebral deposition of amyloid β protein (Aβ). However, no clear explanation of the pathogenesis of apoE-induced AD has been provided. Here we discuss two possible mechanisms by which apoE might enhance Aβ deposition. One is the intracellular pathway in which apoE is internalized by neurons and induces lysosomal accumulation of Aβ and amyloidogenic APP (amyloid precursor protein) fragments, leading to neuronal death. The other is the extracellular pathway in which apoE-containing lipoproteins are trapped by Aβ1–42 deposits mobilizing soluble Aβ peptides and consequently enlarge amyloid plaques. These two mechanisms may operate at different stages of AD pathogenesis and suggest a chaperone-like function for the apoE molecule. Received 4 February 1999; received after revision 9 April 1999; accepted 23 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号