首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 170 毫秒
1.
通过实验研究了Ar气下激光诱导Cu等离子体的空间分辨发射光谱.采用的激光能量为350 mJ/pulse,波长范围为440~540 nm.在局部热力学平衡(LTE)条件下,根据谱线的相对强度,得到了等离子体的电子温度在104K以上.研究了原子发射谱线强度、电子温度和半高全宽(FWHM)随空间、缓冲气体压力变化的规律.结果表明,在Ar气中压力分别为100 kPa和50 kPa相比,铜的原子特征谱强度降低而连续谱和氩离子谱线强度增加.同时缓冲气压的增大导致谱线展宽的增大.  相似文献   

2.
测定了激光诱导铅等离子体中铅原子和离子谱线Stark展宽的时间演化特性以及与缓冲气体压力之间的关系,由此计算得到了等离子体中电子密度的时间演化特性及其与缓冲气体压力之间的关系  相似文献   

3.
采用Nd:YAG激光器产生的脉冲激光诱导击穿铜片形成等离子体,研究了透镜到样品表面距离的不同对激光诱导击穿光谱(LIBS)测量的影响.实验选择合适的延迟时间和采样门宽,并选用元素谱线λ(Cu)为324.8 nm和327.4 nm,λ(Zn)为330.3 nm和334.5 nm进行分析.实验结果表明,透镜到样品表面的距离对LIBS测量确实有很大的影响,谱线强度以及其相对标准偏差均与透镜到样品表面距离密切相关.透镜到样品表面的距离大于焦距时,空气击穿现象严重,不宜用于LIBS测量.激光脉冲能量大,透镜到样品表面距离对LIBS测量的影响大,激光脉冲能量小则相反.  相似文献   

4.
通过单脉冲激光烧蚀MgSO4水溶液射流产生激光等离子体,通过调节ICCD门脉冲相对激光脉冲的延时,测定了液相基质中激光等离子体中Mg元素的时间分辨发射光谱.实验结果表明,当ICCD门延时在0.6μs-1.6μs范围内变化时,谱线强度随延时的增大逐渐减小,但减小的速度越来越慢;谱线的信噪比有一个先上升后缓慢减小并趋于稳定的过程.同时,利用Boltzmann斜线法对Mg原子谱线(518.36nm,517.268nm,516.732nm,383.829nm,383.230nm,382.935nm)进行拟合,得到了不同延时下Mg等离子体的电子温度范围为4772K-6281K,线性相关系数为0.958.拟合结果说明本实验条件下得到的液相基质激光等离子体满足局部热平衡条件.  相似文献   

5.
等离子体射流产生的众多活性粒子中,氧原子是化学活性非常强的氧化剂,也是生成其他含氧活性粒子的基础,因此确定氧原子浓度及其时空分布对提高等离子体射流的应用效率具有重要意义.针对于此,本工作利用单电极等离子体射流产生了实心结构的等离子体羽,利用高分辨光谱仪采集了放电的发射光谱.结果表明,等离子体羽中确实含有氧原子等活性粒子.采用光化线强度法通过比较氧原子谱线(777.4 nm)和氩原子谱线(750.4 nm)的强度比研究了等离子体中氧原子浓度.结果表明:等离子体羽中的氧原子浓度随着距离喷口距离的增加先减小后增大;固定其他实验参数的情况下,氧原子浓度随着外加电压峰值和工作气体流量的增加而增大;当工作气体中掺入空气后,等离子体羽中氧原子浓度随着空气体积分数的增加先增大后减小.结合放电机制,对以上实验现象进行了定性分析,所得结果对于大气压等离子体射流的应用具有重要意义.  相似文献   

6.
记录并标识了氩气微波电子回旋共振(ECR)等离子体在可见光区的发射光谱谱线;测定了氩原子谱线和离子谱线强度随微波功率和氩气气压的变化关系。指出随着微波功率的增加,原子谱线和离子谱线强度均增加并且呈现饱和趋势。  相似文献   

7.
利用原子发射光谱对等离子体粒子密度进行诊断的Saha-Boltzmann方程法,并对其进行了改进.并结合多谱线斜率法,针对用英国avantes公司生产的AvaSpec-2048FT-8-RM型光栅光谱仪采集到的金属蒸汽真空弧(MEVVA)源生成的金属钛等离子体的发射光谱,对其电子、离子温度,电子、原子、一价离子和二价离子密度,原子和一价离子电离度进行诊断;对MEVVA Ti等离子体的热力学状态进行了判断;从而实现MEVVA Ti等离子体的发射光谱诊断.此外,还对MEVVA Ti等离子体参数随离子源工作弧压的变化情况进行了讨论.  相似文献   

8.
利用双脉冲激光等离子体光谱技术测量了激光作用于高纯度硫靶产生的16~24nm波段的发射光谱,分析发现谱线主要来自Sq+(q=7,8,9,10)离子的2s—2p跃迁.基于稳态碰撞辐射模型和激发态离子数布局满足归一化玻尔兹曼分布的假设,计算了不同离化态硫离子在不同等离子体温度和电子密度下的布居数,在不同电子温度下模拟了等离子体光谱,并通过与实验光谱比较确定了等离子体参数.  相似文献   

9.
在常温常压下, 利用自建的激光诱导击穿光谱(LIBS)实验装置获得纳秒激光诱导黄铜等离子体光谱, 研究发射光谱中Zn等离子体光谱在增强型光电耦合器件(ICCD)门延迟为150~3 000 ns时的演化规律, 并利用Stark展宽系数及能级跃迁参数计算等离子体的电子温度和电子密度随ICCD门延迟的演化规律. 实验结果表明: 当ICCD门延迟为150~500 ns时, 初始阶段光谱呈较强的连续谱, 随着ICCD门延迟的增大, 在连续谱上逐渐凸显Zn原子的线状特征谱线, 特征谱线强度在ICCD门延迟为500 ns时达最大; 继续增大ICCD门延迟, 谱线强度逐渐减小, 当ICCD门延迟为3 000 ns时, 等离子体的特征谱线信号基本消失; 谱线强度和电子温度随ICCD门延迟的变化一致, 电子密度和ZnⅠ(481.0 nm)谱线的半高宽随ICCD的变化接近指数拟合.  相似文献   

10.
在常温常压下, 利用自建的激光诱导击穿光谱(LIBS)实验装置获得纳秒激光诱导黄铜等离子体光谱, 研究发射光谱中Zn等离子体光谱在增强型光电耦合器件(ICCD)门延迟为150~3 000 ns时的演化规律, 并利用Stark展宽系数及能级跃迁参数计算等离子体的电子温度和电子密度随ICCD门延迟的演化规律. 实验结果表明: 当ICCD门延迟为150~500 ns时, 初始阶段光谱呈较强的连续谱, 随着ICCD门延迟的增大, 在连续谱上逐渐凸显Zn原子的线状特征谱线, 特征谱线强度在ICCD门延迟为500 ns时达最大; 继续增大ICCD门延迟, 谱线强度逐渐减小, 当ICCD门延迟为3 000 ns时, 等离子体的特征谱线信号基本消失; 谱线强度和电子温度随ICCD门延迟的变化一致, 电子密度和ZnⅠ(481.0 nm)谱线的半高宽随ICCD的变化接近指数拟合.  相似文献   

11.
激光显微光谱谱线强度与所研究原子浓度间没有确定的简单关系,其主要因素是激光显微光谱有自吸现象。本文提出通过理论模型进行自吸修正,使实验观测谱线轮廓转为无自吸校正曲线。该方法对改善LMESA的分析灵敏度,精确度很有用。  相似文献   

12.
本文对Cd、Cu、Cr、Ga、In、Mg等元素在含量超过1%时,研究了摄谱条件及含量变化对谱线自吸的影响。用减少样品提升量及样品粒子在孤隙中的滞留时间的方法,有效地降低了谱线的自吸。同时指出,所用光源发射的谱线存在多普勒位移。  相似文献   

13.
在300~900 nm范围内,对激光击穿氧气的等离子体光谱进行了探测,研究了其时间演化特性.发现在等离子体形成的初期,辐射的主要成分是在很强的连续谱背景下混合着O2,O2^+和O^+激发的线状谱.在等离子体形成后的5μs,只剩下氧原子谱,其最长寿命可达30μs.实验结果表明:光谱中的不同成份按照不同的时间特性衰减.  相似文献   

14.
超高速碰撞过程中会伴有闪光现象.通过构建光谱和光学高温计测量系统,对超高速碰撞产生的闪光频域信号和时域信号进行测量.实验得到了200~1 100 nm波段的光谱.通过对比原子发射光谱数据库确定谱线元素,并分析了铝的特征谱线ALI 394.40 nm和ALI 396.15 nm.对不同碰撞速度下的光谱进行比较,得出碰撞速度与闪光强度的关系.并结合光学高温计得到的光强随时间变化规律,对超高速碰撞闪光特性进行分析.  相似文献   

15.
利用一种改进后的U型管圆锥泡声致发光装置,研究了若丹明6G在1,2-丙二醇溶液中的光致发光现象.测量得到了若丹明6G在不同浓度时的圆锥泡声致发光光谱,结果表明利用圆锥泡声致发光可以激发若丹明6G使其发出荧光,从而证明了在溶液中加入荧光物质的声致发光实验中存在光致发光现象.在较高浓度时,由于若丹明6G存在强烈的自吸收,圆锥泡光致发光的荧光峰值与利用普通激光激发得到的荧光峰值相比向长波方向发生了红移.圆锥泡光致发光能否在光谱测量中被探测到在一定程度上取决于荧光与圆锥泡声致发光的光发射强度的比值.  相似文献   

16.
用电子束蒸发制备一系列纳米ZnO薄膜,用XRD和AFM研究其结构和形貌,重点研究其拉曼谱.ZnO靶的拉曼谱出现了4个明显的峰,与文献报道基本一致.室温下沉积的ZnO薄膜中存在大量缺陷和氧空位,其拉曼频移只有LO模和低频E2模,且其LO模有相对频移,峰展宽,强度加强.ZnO膜的高频拉曼谱对其结构不敏感,各种制备条件下的ZnO膜其高频拉曼谱基本一致.对拉曼谱,结合XRD和AFM分析给出了初步的解释.  相似文献   

17.
将1064nm激光聚焦到水垢上产生等离子体,通过分析水垢等离子体光谱,定性地证认元素钙和镁.通过10条钙原子谱线的Bohzmann图,计算得到水垢等离子体的电子温度是4793K.通过测量镁原子谱线285.21nm的Stark展宽,求得水垢等离子体的电子密度是6.1×1018cm-1.实验结果表明,激光诱导产生的水垢等离子体满足局部热力学平衡模型,并处于光学薄状态,等离子体的频率是2.2×1013Hz,韧制吸收系数为8.87cm-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号