首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rinkevich Y  Lindau P  Ueno H  Longaker MT  Weissman IL 《Nature》2011,476(7361):409-413
The regrowth of amputated limbs and the distal tips of digits represent models of tissue regeneration in amphibians, fish and mice. For decades it had been assumed that limb regeneration derived from the blastema, an undifferentiated pluripotent cell population thought to be derived from mature cells via dedifferentiation. Here we show that a wide range of tissue stem/progenitor cells contribute towards the restoration of the mouse distal digit. Genetic fate mapping and clonal analysis of individual cells revealed that these stem cells are lineage restricted, mimicking digit growth during development. Transplantation of cyan-fluorescent-protein-expressing haematopoietic stem cells, and parabiosis between genetically marked mice, confirmed that the stem/progenitor cells are tissue resident, including the cells involved in angiogenesis. These results, combined with those from appendage regeneration in other vertebrate subphyla, collectively demonstrate that tissue stem cells rather than pluripotent blastema cells are an evolutionarily conserved cellular mode for limb regeneration after amputation.  相似文献   

2.
S Huang  L W Terstappen 《Nature》1992,360(6406):745-749
Haematopoietic stem cells are a population of cells capable both of self renewal and of differentiation into a variety of haematopoietic lineages. Enrichment techniques of human haematopoietic stem cells have used the expression of CD34, present on bone marrow progenitor cells. But most CD34+ bone marrow cells are committed to their lineage, and more recent efforts have focused on the precise characterization of the pluripotent subset of CD34+ cells. Here we report the characterization of two distinct subsets of pluripotent stem cells from human fetal bone marrow, a CD34+, HLA-DR+, CD38- subset that can differentiate into all haematopoietic lineages, and a distinct more primitive subset, that is CD34+, HLA-DR-, CD38-, that can differentiate into haematopoietic precursors and stromal cells capable of supporting the differentiation of these precursors. These data represent, to our knowledge, the first identification of a single cell capable of reconstituting the haematopoietic cells and their associated bone marrow microenvironment.  相似文献   

3.
B A Scheven  J W Visser  P J Nijweide 《Nature》1986,321(6065):79-81
It is well established that the osteoclast is formed by fusion of post-mitotic, mononuclear precursors derived from circulating progenitor cells. However, the precise haematopoietic origin of the osteoclast is unknown. We have investigated this here by fractionating mouse bone marrow and isolating haematopoietic stem cells using a three-step method combining equilibrium density centrifugation and two fluorescence-activated cell sortings (FACS), and have tested the ability of each bone marrow fraction, including highly purified haematopoietic stem cells, to generate osteoclasts during co-culture with preosteoclast-free embryonic long bones. The osteoclast-forming capacity was found to increase with increasing stem cell purity. On the other hand, the culture time needed for osteoclast formation also increased with purification, suggesting the presence of progressively more immature progenitor cells. The pluripotent haematopoietic stem cell fractions with the highest purity needed preincubation with a stem cell-activating factor (interleukin-3) to activate the predominantly quiescent stem cells in vitro.  相似文献   

4.
The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.  相似文献   

5.
Osteoblastic cells regulate the haematopoietic stem cell niche   总被引:2,自引:0,他引:2  
Stem cell fate is influenced by specialized microenvironments that remain poorly defined in mammals. To explore the possibility that haematopoietic stem cells derive regulatory information from bone, accounting for the localization of haematopoiesis in bone marrow, we assessed mice that were genetically altered to produce osteoblast-specific, activated PTH/PTHrP receptors (PPRs). Here we show that PPR-stimulated osteoblastic cells that are increased in number produce high levels of the Notch ligand jagged 1 and support an increase in the number of haematopoietic stem cells with evidence of Notch1 activation in vivo. Furthermore, ligand-dependent activation of PPR with parathyroid hormone (PTH) increased the number of osteoblasts in stromal cultures, and augmented ex vivo primitive haematopoietic cell growth that was abrogated by gamma-secretase inhibition of Notch activation. An increase in the number of stem cells was observed in wild-type animals after PTH injection, and survival after bone marrow transplantation was markedly improved. Therefore, osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation. Niche constituent cells or signalling pathways provide pharmacological targets with therapeutic potential for stem-cell-based therapies.  相似文献   

6.
In the past ten years, great breakthroughs have been achieved in the nuclear reprogramming area. It has been demonstrated that highly differentiated somatic cell genome could be reprogrammed to a pluripotent state, which indicates that differentiated cell fate is not irreversible. Nuclear transplantation and induced pluripotent stem (iPS) cell generation are the two major approaches to inducing reprogramming of differentiated somatic cell genome. In the present review, we will summarize the recent progress of nuclear reprogramming and further discuss the potential to generate patient specific pluripotent stem cells from differentiated somatic cells for therapeutic purpose. Supported by the National High Technology Research and Development Program of China (Grant No. 2005AA210930)  相似文献   

7.
Reprogramming of human somatic cells to pluripotency with defined factors   总被引:5,自引:0,他引:5  
Park IH  Zhao R  West JA  Yabuuchi A  Huo H  Ince TA  Lerou PH  Lensch MW  Daley GQ 《Nature》2008,451(7175):141-146
  相似文献   

8.
9.
Pluripotency of spermatogonial stem cells from adult mouse testis   总被引:2,自引:0,他引:2  
Guan K  Nayernia K  Maier LS  Wagner S  Dressel R  Lee JH  Nolte J  Wolf F  Li M  Engel W  Hasenfuss G 《Nature》2006,440(7088):1199-1203
Embryonic germ cells as well as germline stem cells from neonatal mouse testis are pluripotent and have differentiation potential similar to embryonic stem cells, suggesting that the germline lineage may retain the ability to generate pluripotent cells. However, until now there has been no evidence for the pluripotency and plasticity of adult spermatogonial stem cells (SSCs), which are responsible for maintaining spermatogenesis throughout life in the male. Here we show the isolation of SSCs from adult mouse testis using genetic selection, with a success rate of 27%. These isolated SSCs respond to culture conditions and acquire embryonic stem cell properties. We name these cells multipotent adult germline stem cells (maGSCs). They are able to spontaneously differentiate into derivatives of the three embryonic germ layers in vitro and generate teratomas in immunodeficient mice. When injected into an early blastocyst, SSCs contribute to the development of various organs and show germline transmission. Thus, the capacity to form multipotent cells persists in adult mouse testis. Establishment of human maGSCs from testicular biopsies may allow individual cell-based therapy without the ethical and immunological problems associated with human embryonic stem cells. Furthermore, these cells may provide new opportunities to study genetic diseases in various cell lineages.  相似文献   

10.
Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells-typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation-to adult stem cell lines, which can generate a far more limited repertoire of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine has highlighted the need for a general, reproducible method for classification of these cells. We report here the creation and analysis of a database of global gene expression profiles (which we call the 'stem cell matrix') that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent and differentiated cell types. Using an unsupervised clustering method to categorize a collection of approximately 150 cell samples, we discovered that pluripotent stem cell lines group together, whereas other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis we uncovered a protein-protein network (PluriNet) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas and induced pluripotent cells). Analysis of published data showed that the PluriNet seems to be a common characteristic of pluripotent cells, including mouse embryonic stem and induced pluripotent cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotency and self-renewal are under tight control by specific molecular networks.  相似文献   

11.
12.
R Munker  J Gasson  M Ogawa  H P Koeffler 《Nature》1986,323(6083):79-82
Tumor necrosis factor (TNF) is synthesized by macrophages exposed to endotoxin. It produces haemorrhagic necrosis of a variety of tumours in mice and is cytostatic or cytocidal against various transformed cell lines in vitro, but viability of normal human or rodent cells is unaffected. The role of TNF is unlikely to be restricted to the rejection of tumours. Colony-stimulating factors (CSFs) are required for survival, proliferation and differentiation of haematopoietic progenitor cells. The haematopoietic growth factor known as granulocyte-monocyte colony-stimulating factor (GM-CSF) has the ability to stimulate proliferation and differentiation of normal granulocyte-monocyte and eosinophil stem cells and enhance the proliferation of pluripotent, megakaryocyte and erythroid stem cells. In addition, GM-CSF stimulates a variety of functional activities in mature granulocytes and macrophages, for example inhibition of migration, phagocytosis of microbes, oxidative metabolism, and antibody-dependent cytotoxic killing of tumour cells. We show here that TNF markedly stimulates production of GM-CSF messenger RNA and protein in normal human lung fibroblasts and vascular endothelial cells, and in cells of several malignant tissues.  相似文献   

13.
Organogenesis is dependent on the formation of distinct cell types within the embryo. Important to this process are the hox genes, which are believed to confer positional identities to cells along the anteroposterior axis. Here, we have identified the caudal-related gene cdx4 as the locus mutated in kugelig (kgg), a zebrafish mutant with an early defect in haematopoiesis that is associated with abnormal anteroposterior patterning and aberrant hox gene expression. The blood deficiency in kgg embryos can be rescued by overexpressing hoxb7a or hoxa9a but not hoxb8a, indicating that the haematopoietic defect results from perturbations in specific hox genes. Furthermore, the haematopoietic defect in kgg mutants is not rescued by scl overexpression, suggesting that cdx4 and hox genes act to make the posterior mesoderm competent for blood development. Overexpression of cdx4 during zebrafish development or in mouse embryonic stem cells induces blood formation and alters hox gene expression. Taken together, these findings demonstrate that cdx4 regulates hox genes and is necessary for the specification of haematopoietic cell fate during vertebrate embryogenesis.  相似文献   

14.
Huang P  He Z  Ji S  Sun H  Xiang D  Liu C  Hu Y  Wang X  Hui L 《Nature》2011,475(7356):386-389
  相似文献   

15.
Recombinant retroviral genomes encoding a chromosomal human beta-globin gene have been used to transduce murine haematopoietic stem cells in vitro. After permanent engraftment of lethally irradiated recipients with the transduced cells, the human beta-globin gene is expressed at significant levels only within the erythroid lineage. These results indicate that it is possible to obtain stable expression of exogenous chromosomal DNA sequences introduced into mature haematopoietic cells in vivo via stem cell infection, and that human disorders of haemoglobin production may be more feasible candidates for somatic cell gene therapy than previously suspected.  相似文献   

16.
Distinctive properties of stem cells are not autonomously achieved, and recent evidence points to a level of external control from the microenvironment. Here, we demonstrate that self-renewal and pluripotent properties of human embryonic stem (ES) cells depend on a dynamic interplay between human ES cells and autologously derived human ES cell fibroblast-like cells (hdFs). Human ES cells and hdFs are uniquely defined by insulin-like growth factor (IGF)- and fibroblast growth factor (FGF)-dependence. IGF 1 receptor (IGF1R) expression was exclusive to the human ES cells, whereas FGF receptor 1 (FGFR1) expression was restricted to surrounding hdFs. Blocking the IGF-II/IGF1R pathway reduced survival and clonogenicity of human ES cells, whereas inhibition of the FGF pathway indirectly caused differentiation. IGF-II is expressed by hdFs in response to FGF, and alone was sufficient in maintaining human ES cell cultures. Our study demonstrates a direct role of the IGF-II/IGF1R axis on human ES cell physiology and establishes that hdFs produced by human ES cells themselves define the stem cell niche of pluripotent human stem cells.  相似文献   

17.
Wada H  Masuda K  Satoh R  Kakugawa K  Ikawa T  Katsura Y  Kawamoto H 《Nature》2008,452(7188):768-772
During haematopoiesis, pluripotent haematopoietic stem cells are sequentially restricted to give rise to a variety of lineage-committed progenitors. The classical model of haematopoiesis postulates that, in the first step of differentiation, the stem cell generates common myelo-erythroid progenitors and common lymphoid progenitors (CLPs). However, our previous studies in fetal mice showed that myeloid potential persists even as the lineage branches segregate towards T and B cells. We therefore proposed the 'myeloid-based' model of haematopoiesis, in which the stem cell initially generates common myelo-erythroid progenitors and common myelo-lymphoid progenitors. T-cell and B-cell progenitors subsequently arise from common myelo-lymphoid progenitors through myeloid-T and myeloid-B stages, respectively. However, it has been unclear whether this myeloid-based model is also valid for adult haematopoiesis. Here we provide clonal evidence that the early cell populations in the adult thymus contain progenitors that have lost the potential to generate B cells but retain substantial macrophage potential as well as T-cell, natural killer (NK)-cell and dendritic-cell potential. We also show that such T-cell progenitors can give rise to macrophages in the thymic environment in vivo. Our findings argue against the classical dichotomy model in which T cells are derived from CLPs; instead, they support the validity of the myeloid-based model for both adult and fetal haematopoiesis.  相似文献   

18.
Although the first mouse embryonic stem (ES) cell lines were derived 25 years ago using feeder-layer-based blastocyst cultures, subsequent efforts to extend the approach to other mammals, including both laboratory and domestic species, have been relatively unsuccessful. The most notable exceptions were the derivation of non-human primate ES cell lines followed shortly thereafter by their derivation of human ES cells. Despite the apparent common origin and the similar pluripotency of mouse and human embryonic stem cells, recent studies have revealed that they use different signalling pathways to maintain their pluripotent status. Mouse ES cells depend on leukaemia inhibitory factor and bone morphogenetic protein, whereas their human counterparts rely on activin (INHBA)/nodal (NODAL) and fibroblast growth factor (FGF). Here we show that pluripotent stem cells can be derived from the late epiblast layer of post-implantation mouse and rat embryos using chemically defined, activin-containing culture medium that is sufficient for long-term maintenance of human embryonic stem cells. Our results demonstrate that activin/Nodal signalling has an evolutionarily conserved role in the derivation and the maintenance of pluripotency in these novel stem cells. Epiblast stem cells provide a valuable experimental system for determining whether distinctions between mouse and human embryonic stem cells reflect species differences or diverse temporal origins.  相似文献   

19.
E Spooncer  B I Lord  T M Dexter 《Nature》1985,316(6023):62-64
Stromal cells play a critical role in haematopoiesis, both in a permissive and, probably, in a directive manner. Study of the interactions between stromal cells and haematopoietic stem cells, however, is difficult to perform using whole bone marrow, in which stem cells are indistinguishable from precursor cells and maturing haematopoietic cells, and where stromal and haematopoietic cells co-exist in a heterogeneous mixture. We have purified primitive haematopoietic spleen colony-forming cells (CFU-S) using fluorescence-activated cell sorting (FACS) and produced CFU-S populations which approach 100% purity (ref. 6 and B.I.L. and E.S., in preparation). This cell population is devoid of significant stromal cells and mature haematopoietic cells. Here, we report that when purified CFU-S are seeded onto a stromal adherent layer in vitro, foci of haematopoietic cells develop within the stroma followed by production of a wave of maturing and mature progeny. However, self-renewal of CFU-S does not occur and haematopoietic activity rapidly declines, indicating that caution should be applied in the use of highly purified stem cells for human bone marrow transplantation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号