首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

2.
Cell-cell adhesion mediated by CD8 and MHC class I molecules   总被引:30,自引:0,他引:30  
CD4 and CD8 are cell-surface glycoproteins expressed on mutually exclusive subsets of peripheral T cells. T cells that express CD4 have T-cell antigen receptors that are specific for antigens presented by major histocompatibility complex class II molecules, whereas T cells that express CD8 have receptors specific for antigens presented by MHC class I molecules (reviewed in ref. 1). Based on this correlation and on the observation that anti-CD4 and anti-CD8 antibodies inhibit T-cell function, it has been suggested that CD4 and CD8 increase the avidity of T cells for their targets by binding to MHC class II or MHC class I molecules respectively. Also, CD4 and CD8 may become physically associated with the T-cell antigen receptor, forming a higher-affinity complex for antigen and MHC molecules, and could be involved in signal transduction. Cell-cell adhesion dependent CD4 and MHC II molecules has recently been demonstrated. To determine whether CD8 can interact with MHC class I molecules in the absence of the T-cell antigen receptor, we have developed a cell-cell binding assay that measures adhesion of human B-cell lines expressing MHC class I molecules to transfected cells expressing high levels of human CD8. In this system, CD8 and class I molecules mediate cell-cell adhesion, showing that CD8 directly binds to MHC class I molecules.  相似文献   

3.
L Haughn  S Gratton  L Caron  R P Sékaly  A Veillette  M Julius 《Nature》1992,358(6384):328-331
The membrane glycoprotein CD4 enhances antigen-mediated activation of T cells restricted by class II molecules of the major histocompatibility complex (MHC). This positive function has been attributed to the protein tyrosine kinase p56lck (ref. 4), which is noncovalently associated with the cytoplasmic portion of CD4, and is activated on CD4 aggregation. Antigen presentation by MHC class II molecules coaggregates CD4 and the T-cell antigen receptor (TCR alpha beta-CD3). Thus, the mutual specificity of CD4 and TCR alpha beta for the MHC-antigen complex results in the juxtaposition of p56lck and TCR alpha beta-CD3. In contrast, anti-CD4 antibodies can abrogate antigen-induced, as well as anti-TCR-induced T-cell activation, indicating that CD4 might also transduce negative signals. The molecular basis for this opposing function remains unclear. Here we show that the CD4-p56lck complex prohibits the induction of activation signals through the TCR-CD3 complex when not specifically included in the signalling process. This negative effect does not require anti-CD4 treatment, indicating that the induction of distinct negative signals is probably not involved. Rather, the results demonstrate that the CD4-p56lck complex provides prerequisite signals for antigen-receptor-induced T-cell growth and thus characterize a molecular mechanism for functional constraints imposed on T-cell activation by the MHC.  相似文献   

4.
M K Newell  L J Haughn  C R Maroun  M H Julius 《Nature》1990,347(6290):286-289
Effector T cells are restricted to recognizing antigens associated with major histocompatibility complex (MHC) molecules. Specific recognition is mediated by the alpha beta heterodimer of the T-cell receptor (TCR)/CD3 complex, although other membrane components are involved in T-cell antigen recognition and functions. There has been much controversy in this regard over the part played by the CD4 glycoprotein. It is known that expression of CD4 correlates closely with the cell's ability to recognize antigens bound to class II MHC molecules and that CD4 can bind to class II molecules. Also monoclonal antibodies to CD4 can modify signals generated through the TCR/CD3 complex. It has therefore been proposed that CD4 binds to class II molecules, coaggregates with the TCR-CD3 complex and aids the activation of T cells. But given that TCR can itself impart restriction on the cell, it remains unclear whether the contribution of CD4-derived signals to those generated through the TCR alpha beta-CD3 complex is central to this activation. Here we report that when preceded by ligation of CD4, signalling through TCR alpha beta results in T cell unresponsiveness due to the induction of activation dependent cell death by apoptosis. These results imply that CD4 is critically involved in determining the outcome of signals generated through TCR, and could explain why the induction of effector T cells needs to be MHC-restricted.  相似文献   

5.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

6.
Differentiation of bone marrow derived precursors into mature T cells takes place in the thymus. During differentiation, T cells develop the receptor repertoire which allows them to recognize antigen in the context of self major histocompatibility complex (MHC) molecules. Mature T helper cells (mostly CD4+ CD8-) recognize antigen in the context of class II MHC molecules, whereas cytotoxic T cells (mostly CD4-CD8+) recognize antigen in the context of class I MHC determinants. Thymic MHC-encoded determinants greatly influence the selection of the T-cell receptor repertoire. In addition to positive selection, a negative selection to eliminate self-reactive T-cell clones is thought to occur in the thymus, but how this 'education' occurs is not well understood. It has been suggested that during differentiation an interaction between the T-cell receptor (TCR) and MHC-encoded determinants occurs, leading to the selection of an MHC-restricted receptor repertoire. In support of this hypothesis, class-II-specific, CD4+ CD8- helper T cells fail to develop in mice neonatally treated with anti-class II monoclonal antibody (mAb). As CD4-CD8+ cells differ from the CD4+ CD8- lineage (in function, MHC-restriction specificity and perhaps site of education) we examined whether interactions with MHC determinants are also necessary for the development of class-I-specific T cells. Here we show that mice chronically treated with anti-class I mAb from birth lack CD4-CD8+ cells and cytotoxic T-cell precursors, indicating that most CD4-CD8+ T cells need interaction with class I MHC molecules during differentiation.  相似文献   

7.
D Gay  P Maddon  R Sekaly  M A Talle  M Godfrey  E Long  G Goldstein  L Chess  R Axel  J Kappler 《Nature》1987,328(6131):626-629
Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.  相似文献   

8.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

9.
The CD4 (T4) molecule is expressed on a subset of T lymphocytes involved in class II MHC recognition, and is probably the physiological receptor for one or more monomorphic regions of class II MHC (refs 1-3). CD4 also functions as a receptor for the human immunodeficiency virus (HIV) exterior envelope glycoprotein (gp120) (refs 4-9), being essential for virus entry into the host cell and for membrane fusion, which contributes to cell-to-cell transmission of the virus and to its cytopathic effects. We have used a baculovirus expression system to generate mg quantities of a hydrophilic extracellular segment of CD4. Concentrations of soluble CD4 in the nanomolar range, like certain anti-CD4 monoclonal antibodies, inhibit syncytium formation and HIV infection by binding gp120-expressing cells. Perhaps more importantly, class II specific T-cell interactions are uninhibited by soluble CD4 protein, whereas they are virtually abrogated by equivalent amounts of anti-T4 antibody. This may reflect substantial differences in CD4 affinity for gp120 and class II MHC.  相似文献   

10.
Human cluster-of-differentiation 1 (CD1) is a family of cell surface glycoproteins of unknown function expressed on immature thymocytes, epidermal Langerhans cells and a subset of B lymphocytes. Three homologous proteins, CD1a, b and c, have been defined serologically, and the CD1 gene locus on human chromosome 1 contains five potential CD1 genes. Analysis of the predicted amino-acid sequences of CD1 molecules reveals a low but significant level of homology to major histocompatibility complex (MHC) class I and class II molecules, and, like MHC class I molecules, CD1 molecules are associated non-covalently with beta 2-microglobulin. These structural similarities to known antigen-presenting molecules, together with the expression of CD1 on cells capable of antigen presentation, suggest a role for CD1 molecules in antigen recognition by T cells. Here we demonstrate the specific recognition of CD1a by a CD4-CD8- alpha beta T-cell receptor (TCR) expressing cytolytic T lymphocyte (CTL) line and the specific recognition of CD1c by a CD4-CD8- gamma delta TCR CTL line. The interaction of CD1-specific CTLs with CD1+ target cells appeared to involve the CD3-TCR complex, and did not show evidence of MHC restriction. These results suggest that for a subset of T cells, CD1 molecules serve a function analogous to that of MHC class I and II molecules.  相似文献   

11.
R H Seong  J W Chamberlain  J R Parnes 《Nature》1992,356(6371):718-720
Mature T cells express either CD4 or CD8 on their surface. Most helper T cells express CD4, which binds to class II major histocompatibility complex (MHC) proteins, and most cytotoxic T cells express CD8, which binds to class I MHC proteins. In the thymus, mature CD4+CD8- and CD4-CD8+ T cells expressing alpha beta T-cell antigen receptors (TCR) develop from immature thymocytes through CD4+CD8+ alpha beta TCR+ intermediates. Experiments using mice transgenic for alpha beta TCR suggest that the specificity of the TCR determines the CD4/CD8 phenotype of mature T cells. These results, however, do not indicate how a T cell differentiates into the CD4 or CD8 lineage. Here we show that the CD4 transmembrane region and/or cytoplasmic tail mediates the delivery of a specific signal that directs differentiation of T cells to a CD4 lineage. We generated transgenic mice expressing a hybrid molecule composed of the CD8 alpha extracellular domains linked to the CD4 transmembrane region and cytoplasmic tail. We predicted that this hybrid molecule would bind to class I MHC proteins through the extracellular domains but deliver the intracellular signals characteristic of CD4. By crossing our transgenic mice with mice expressing a transgenic alpha beta TCR specific for a particular antigen plus class I MHC protein, we were able to express the hybrid molecule in developing thymocytes expressing the class I MHC-restricted TCR. Our results show that the signal transduced by the hybrid molecule results in the differentiation of immature thymocytes expressing a class I-restricted TCR into mature T cells expressing CD4.  相似文献   

12.
P Johnson  A F Williams 《Nature》1986,323(6083):74-76
The CD8 antigen is a marker for T-lymphocyte subsets that is absent from helper T cells but expressed on cytotoxic T cells which recognize foreign determinants in association with class I major histocompatibility complex (MHC) antigens. It has been suggested that CD8 plays some part in recognition by CD8+ cytotoxic T cells since anti-CD8 antibodies can block their functions and the human CD8 antigen contains a domain with clear similarities to immunoglobulin and T-cell receptor (TCR) variable-region (V) domains. Human CD8 antigen is thought to be a homodimer but in the mouse and rat the equivalent antigens (alternatively called Lyt2,3 and OX8) are heterodimeric. Rat CD8 contains two chains of relative molecular mass 32,000 (32K) and 37K: the 32K chain is the rat homologue of human CD8 and mouse Lyt2. We describe here the molecular cloning of the rat 37K chain using an oligonucleotide probe predicted from peptide sequence. The full protein sequence is derived from the complementary DNA and matches limited peptide sequence for mouse Lyt3. The new sequence is more like immunoglobulin and T-cell receptor V domains than other T-cell antigens and includes a patch that is almost identical to some joining (J) piece sequences. This suggests that the CD8 and receptor heterodimers may have evolved directly from a common ancestor.  相似文献   

13.
Expression and function of CD4 in a murine T-cell hybridoma   总被引:33,自引:0,他引:33  
The CD4 (T4) antigen was originally described as a phenotypic marker specific for helper T cells, and has recently been shown to be the receptor for the human immunodeficiency virus (HIV). Functional studies using monoclonal antibodies directed at CD4 and major histocompatibility complex (MHC) class II molecules led to the suggestion that CD4 binds to the MHC class II molecules expressed on stimulator cells, enhancing T-cell responsiveness by increasing the avidity of T cell-stimulator cell interaction and/or by transmitting a positive intracellular signal. But recent evidence that antibodies to CD4 inhibit T-cell responsiveness in the absence of any putative ligand for CD4 has been interpreted as suggesting that antibody-mediated inhibition may involve the transmission of a negative signal via the CD4 molecule instead. We have infected a murine T-cell hybridoma that produces interleukin 2 (IL-2) in response to human class II HLA-DR antigens with a retroviral vector containing CD4 cDNA. The resulting CD4-expressing hybridoma cell lines produce 6- to 20-fold more IL-2 in response to HLA-DR antigens than control cell lines. Furthermore, when antigen levels are suboptimal, the response of the cell lines is entirely CD4-dependent. The data presented here clearly demonstrate that CD4 can enhance T-cell responsiveness and may be crucial in the response to suboptimal levels of antigen.  相似文献   

14.
Lymphocytes are most reliably subdivided on the basis of their receptors for antigen at the cell surface. Three subtypes of lymphocytes are well defined: B cells that bear surface immunoglobulin and make antibody, CD4+T cells with CD3 alpha beta receptors specific for antigen associated with class II major histocompatibility complex molecules, and CD8+T cells with CD3 alpha beta receptors specific for antigen associated with class I MHC molecules. These T cells are responsible for known forms of cell-mediated immunity. The discovery of a third rearranging T-cell specific gene called gamma (refs 1 and 2) has revealed the presence of a new class of T cells bearing a new receptor type, CD3 gamma delta (refs 3-7). To date, neither the function nor the specificity of cells bearing this receptor has been determined. Because gamma delta T cells are the main lymphocyte of epidermis, it was proposed that such cells could be important in surveillance of all epithelia. We have isolated intraepithelial lymphocytes from murine small intestine, and shown that they predominantly or exclusively express CD3 gamma delta receptors. Unlike the epidermal lymphocytes, these cells also express CD8, and they use a different V lambda gene to form their receptor. This strongly suggests that gamma delta T cells home in a very specific manner to epithelia, where they presumably mediate their function.  相似文献   

15.
D Vidovi?  M Rogli?  K McKune  S Guerder  C MacKay  Z Dembi? 《Nature》1989,340(6235):646-650
Distinct T-lymphocyte subsets recognize antigens in conjunction with different classes of major histocompatibility complex (MHC) glycoproteins using the T-cell receptor (TCR), a disulphide-linked heterodimer associated with the CD3 complex on the cell surface. In general, class I and class II MHC products provide a context for the recognition of foreign antigens by CD8+ and CD4+ T cells, respectively. This recognition seems to be largely dependent on alpha beta TCR heterodimers, whereas the function of the second gamma delta TCR, present on a minor subpopulation of cells, is still unknown. In the mouse, the existence of six cell-surface MHC class I products (K, D, L, Qa-1, Qa-2 and Tla) has been firmly established by serological, biochemical and genetic evidence. So far, only the most polymorphic of them, K, D and L ('classical' class I) have been reported as restriction elements for T-cell recognition of foreign antigens. The function of the relatively invariant Qa and Tla molecules remains unknown. We have made a T-helper cell hybridoma clone (DGT3) that recognizes synthetic copolymer poly(Glu50Tyr50) in the context of Qa-1 cell surface product, and has a CD4-CD8- phenotype. Our studies indicate that DGT3 cells express the gamma delta TCR on the cell surface, implicating its role in Qa-1-restricted antigen recognition. This is the first evidence that T cells can recognize foreign antigen in association with self Qa product, confirming that Qa molecules not only topologically, but also functionally, belong to the MHC.  相似文献   

16.
The CD4 and CD8 molecules are transmembrane glycoproteins expressed by functionally distinct subsets of mature T cells. CD4+ and CD8+ T cells recognize antigens on major histocompatibility complex (MHC) class II-bearing and class I-bearing target cells respectively. The ability of monoclonal antibodies against CD4 and CD8 to block antigen recognition by T cells, as well as cell-cell adhesion assays, indicate that CD4 and CD8 bind to nonpolymorphic determinants of class II or class I MHC. Here we demonstrate that soluble recombinant HLA-DR4 molecules from insect cells and HLA-DR-derived peptides bind to immobilized recombinant soluble CD4. CD4 binds recombinant soluble DR4 heterodimers, as well as the soluble DR4-beta chain alone. Furthermore, two out of twelve DR4-beta peptides could interact specifically with CD4. These findings show that CD4 interacts with a region of MHC class II molecules analogous to a previously identified loop in class I MHC proteins that binds CD8 (refs 8, 9).  相似文献   

17.
A M O'Rourke  J Rogers  M F Mescher 《Nature》1990,346(6280):187-189
The CD8 glycoprotein of T cells bind nonpolymorphic regions of class I major histocompatibility complex proteins on target cells and these interactions promote antigen recognition and signalling by the T-cell receptor. Studies using artificial membranes indicated that effective CD8/class I interaction is critical for response by alloantigen-specific cytotoxic T lymphocytes when class I protein is the only ligand on the antigen-bearing surface. But significant CD8-mediated binding of cytotoxic T lymphocytes to non-antigenic class I protein could not be detected in the absence of the alloantigen. These apparently contradictory findings indicate that CD8 binding to class I protein might be activated through the T-cell receptor and the results reported here demonstrate that this is the case. Treatment of cytotoxic T lymphocytes with soluble anti-T-cell receptor antibody activates adhesion of the cytotoxic T lymphocytes to class I, but not class II proteins. The specificity of this binding implies that it is mediated by CD8 and blocking by anti-CD8 antibodies confirmed this. Furthermore, binding of CD8 to class I protein resulted in generation of an additional signal(s) necessary to initiate response at low T-cell receptor occupancy levels.  相似文献   

18.
Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells   总被引:44,自引:0,他引:44  
Mice homozygous for a beta 2-microglobulin gene disruption do not express any detectable beta 2-m protein. They express little if any functional major histocompatibility complex (MHC) class I antigen on the cell surface yet are fertile and apparently healthy. They show a normal distribution of gamma delta, CD4+8+ and CD4+8- T cells, but have no mature CD4-8+ T cells and are defective in CD4-8+ T cell-mediated cytotoxicity. Our results strongly support earlier evidence that MHC class I molecules are crucial for positive selection of T cell antigen receptor alpha beta+ CD4-8+ T cells in the thymus and call into question the non-immune functions that have been ascribed to MHC class I molecules.  相似文献   

19.
Positive selection of CD4+ thymocytes controlled by MHC class II gene products   总被引:20,自引:0,他引:20  
The mature T-cell antigen receptor repertoire is characterized by lack of reactivity to self-components as well as by preferential reactivity to foreign antigens in the context of polymorphic self-proteins encoded within the major histocompatibility complex. Whereas the former characteristic (referred to as negative selection or tolerance) is associated with intrathymic deletion of T cells expressing T-cell antigen receptor beta-chain variable (V beta) domains, which confer a preferential reactivity to self antigens, the existence of the latter (referred to as positive selection or MHC restriction) has so far only been inferred indirectly from functional studies. We show here that intrathymic deletion of V+beta 6 T cells (reactive with a self-antigen encoded by the Mlsa locus) is controlled by polymorphic MHC class II determinants. Furthermore, in mice lacking expression of Mlsa, the same class II MHC loci control the frequency of occurrence of V+beta 6 cells among mature CD4+ T lymphocytes. These data are direct evidence for positive selection by MHC determinants in the thymus in unmanipulated animals.  相似文献   

20.
Antigens presented to CD4+ T cells derive primarily from exogenous proteins that are processed into peptides capable of binding to class II major histocompatibility complex (MHC) molecules in an endocytic compartment. In contrast, antigens presented to CD8+ T cells derive mostly from proteins processed in the cytosol, and peptide loading onto class I MHC molecules in an early exocytic compartment is dependent on a transporter for antigen presentation encoded in the class II MHC region. Endogenous cytosolic antigen can also be presented by class II molecules. Here we show that, unlike class I-restricted recognition of antigen, HLA-DR1-restricted recognition of cytosolic antigen occurs in mutant cells without a transporter for antigen presentation. In contrast, DR1-restricted recognition of a short cytosolic peptide is dependent on such a transporter. Thus helper T-cell epitopes can be generated from cytosolic antigens by several mechanisms, one of which is distinct from the classical class I pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号