首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Womelsdorf T  Fries P  Mitra PP  Desimone R 《Nature》2006,439(7077):733-736
Our capacity to process and respond behaviourally to multiple incoming stimuli is very limited. To optimize the use of this limited capacity, attentional mechanisms give priority to behaviourally relevant stimuli at the expense of irrelevant distractors. In visual areas, attended stimuli induce enhanced responses and an improved synchronization of rhythmic neuronal activity in the gamma frequency band (40-70 Hz). Both effects probably improve the neuronal signalling of attended stimuli within and among brain areas. Attention also results in improved behavioural performance and shortened reaction times. However, it is not known how reaction times are related to either response strength or gamma-band synchronization in visual areas. Here we show that behavioural response times to a stimulus change can be predicted specifically by the degree of gamma-band synchronization among those neurons in monkey visual area V4 that are activated by the behaviourally relevant stimulus. When there are two visual stimuli and monkeys have to detect a change in one stimulus while ignoring the other, their reactions are fastest when the relevant stimulus induces strong gamma-band synchronization before and after the change in stimulus. This enhanced gamma-band synchronization is also followed by shorter neuronal response latencies on the fast trials. Conversely, the monkeys' reactions are slowest when gamma-band synchronization is high in response to the irrelevant distractor. Thus, enhanced neuronal gamma-band synchronization and shortened neuronal response latencies to an attended stimulus seem to have direct effects on visually triggered behaviour, reflecting an early neuronal correlate of efficient visuo-motor integration.  相似文献   

3.
D Sagi  B Julesz 《Nature》1986,321(6071):693-695
There is increasing evidence that it is possible to shift an aperture of focal attention to a position in visual space independent of fixation and that this can be done much faster than the eyes are able to move. Recently, we showed that such serial scrutiny by the aperture of focal attention is required before an observer is able to tell what a target is (for example, to know whether the orientation of a line segment is horizontal or vertical). Here we considered whether attention directed towards a specific position in the visual field for an orientation discrimination task improves performance on a simple detection task in the area to which attention is directed. We found that a small test flash could be detected when it was positioned near a peripheral line target presented briefly, if the orientation of the target had to be identified. The test flash could not be detected when presented at some distance from the same target or when another target had to be identified. This enhancement implies that even simple identification tasks such as orientation discrimination are not performed passively by the visual system.  相似文献   

4.
Perceptual learning without perception.   总被引:7,自引:0,他引:7  
T Watanabe  J E Ná?ez  Y Sasaki 《Nature》2001,413(6858):844-848
The brain is able to adapt rapidly and continually to the surrounding environment, becoming increasingly sensitive to important and frequently encountered stimuli. It is often claimed that this adaptive learning is highly task-specific, that is, we become more sensitive to the critical signals in the tasks we attend to. Here, we show a new type of perceptual learning, which occurs without attention, without awareness and without any task relevance. Subjects were repeatedly presented with a background motion signal so weak that its direction was not visible; the invisible motion was an irrelevant background to the central task that engaged the subject's attention. Despite being below the threshold of visibility and being irrelevant to the central task, the repetitive exposure improved performance specifically for the direction of the exposed motion when tested in a subsequent suprathreshold test. These results suggest that a frequently presented feature sensitizes the visual system merely owing to its frequency, not its relevance or salience.  相似文献   

5.
Action video game modifies visual selective attention   总被引:17,自引:0,他引:17  
Green CS  Bavelier D 《Nature》2003,423(6939):534-537
As video-game playing has become a ubiquitous activity in today's society, it is worth considering its potential consequences on perceptual and motor skills. It is well known that exposing an organism to an altered visual environment often results in modification of the visual system of the organism. The field of perceptual learning provides many examples of training-induced increases in performance. But perceptual learning, when it occurs, tends to be specific to the trained task; that is, generalization to new tasks is rarely found. Here we show, by contrast, that action-video-game playing is capable of altering a range of visual skills. Four experiments establish changes in different aspects of visual attention in habitual video-game players as compared with non-video-game players. In a fifth experiment, non-players trained on an action video game show marked improvement from their pre-training abilities, thereby establishing the role of playing in this effect.  相似文献   

6.
Mitchell JF  Stoner GR  Reynolds JH 《Nature》2004,429(6990):410-413
A question of long-standing interest to philosophers, psychologists and neuroscientists is how the brain selects which signals enter consciousness. Binocular rivalry and attention both involve selection of visual stimuli, but affect perception quite differently. During binocular rivalry, awareness alternates between two different stimuli presented to the two eyes. In contrast, attending to one of two different stimuli impairs discrimination of the ignored stimulus, but without causing it to disappear from consciousness. Here we show that despite this difference, attention and rivalry rely on shared object-based selection mechanisms. We cued attention to one of two superimposed transparent surfaces and then deleted the image of one surface from each eye, resulting in rivalry. Observers usually reported seeing only the cued surface. They were also less accurate in judging unpredictable changes in the features of the uncued surface. Our design ensured that selection of the cued surface could not have resulted from spatial, ocular or feature-based mechanisms. Rather, attention was drawn to one surface, and this caused the other surface to be perceptually suppressed during rivalry. These results raise the question of how object representations compete during these two forms of perceptual selection, even as the features of those objects change unpredictably over time.  相似文献   

7.
Experience-dependent representation of visual categories in parietal cortex   总被引:1,自引:0,他引:1  
Freedman DJ  Assad JA 《Nature》2006,443(7107):85-88
Categorization is a process by which the brain assigns meaning to sensory stimuli. Through experience, we learn to group stimuli into categories, such as 'chair', 'table' and 'vehicle', which are critical for rapidly and appropriately selecting behavioural responses. Although much is known about the neural representation of simple visual stimulus features (for example, orientation, direction and colour), relatively little is known about how the brain learns and encodes the meaning of stimuli. We trained monkeys to classify 360 degrees of visual motion directions into two discrete categories, and compared neuronal activity in the lateral intraparietal (LIP) and middle temporal (MT) areas, two interconnected brain regions known to be involved in visual motion processing. Here we show that neurons in LIP--an area known to be centrally involved in visuo-spatial attention, motor planning and decision-making-robustly reflect the category of motion direction as a result of learning. The activity of LIP neurons encoded directions of motion according to their category membership, and that encoding shifted after the monkeys were retrained to group the same stimuli into two new categories. In contrast, neurons in area MT were strongly direction selective but carried little, if any, explicit category information. This indicates that LIP might be an important nexus for the transformation of visual direction selectivity to more abstract representations that encode the behavioural relevance, or meaning, of stimuli.  相似文献   

8.
Identifying natural images from human brain activity   总被引:1,自引:0,他引:1  
Kay KN  Naselaris T  Prenger RJ  Gallant JL 《Nature》2008,452(7185):352-355
A challenging goal in neuroscience is to be able to read out, or decode, mental content from brain activity. Recent functional magnetic resonance imaging (fMRI) studies have decoded orientation, position and object category from activity in visual cortex. However, these studies typically used relatively simple stimuli (for example, gratings) or images drawn from fixed categories (for example, faces, houses), and decoding was based on previous measurements of brain activity evoked by those same stimuli or categories. To overcome these limitations, here we develop a decoding method based on quantitative receptive-field models that characterize the relationship between visual stimuli and fMRI activity in early visual areas. These models describe the tuning of individual voxels for space, orientation and spatial frequency, and are estimated directly from responses evoked by natural images. We show that these receptive-field models make it possible to identify, from a large set of completely novel natural images, which specific image was seen by an observer. Identification is not a mere consequence of the retinotopic organization of visual areas; simpler receptive-field models that describe only spatial tuning yield much poorer identification performance. Our results suggest that it may soon be possible to reconstruct a picture of a person's visual experience from measurements of brain activity alone.  相似文献   

9.
为探讨威胁刺激类型对不同特质焦虑水平跆拳道运动员视觉搜索绩效的影响,采用视觉搜索范式,以真实比赛场景中具有威胁性的视频和图片为刺激材料,对52名跆拳道运动员(高、低特质焦虑水平组各26人)视觉搜索反应时和反应准确率进行了考察.结果发现:低特质焦虑水平跆拳道运动员的视觉搜索效率更高,威胁刺激及刺激呈现方式对跆拳道运动员的视觉搜索效率均有显著影响.  相似文献   

10.
The way that we perceive and interact with objects depends on our previous experience with them. For example, a bird expert is more likely to recognize a bird as a sparrow, a sandpiper or a cockatiel than a non-expert. Neurons in the inferior temporal cortex have been shown to be important in the representation of visual objects; however, it is unknown which object features are represented and how these representations are affected by categorization training. Here we show that feature selectivity in the macaque inferior temporal cortex is shaped by categorization of objects on the basis of their visual features. Specifically, we recorded from single neurons while monkeys performed a categorization task with two sets of parametric stimuli. Each stimulus set consisted of four varying features, but only two of the four were important for the categorization task (diagnostic features). We found enhanced neuronal representation of the diagnostic features relative to the non-diagnostic ones. These findings demonstrate that stimulus features important for categorization are instantiated in the activity of single units (neurons) in the primate inferior temporal cortex.  相似文献   

11.
Neuronal correlates of a perceptual decision   总被引:17,自引:0,他引:17  
W T Newsome  K H Britten  J A Movshon 《Nature》1989,341(6237):52-54
The relationship between neuronal activity and psychophysical judgement has long been of interest to students of sensory processing. Previous analyses of this problem have compared the performance of human or animal observers in detection or discrimination tasks with the signals carried by individual neurons, but have been hampered because neuronal and perceptual data were not obtained at the same time and under the same conditions. We have now measured the performance of monkeys and of visual cortical neurons while the animals performed a psychophysical task well matched to the properties of the neurons under study. Here we report that the reliability and sensitivity of most neurons on this task equalled or exceeded that of the monkeys. We therefore suggest that under our conditions, psychophysical judgements could be based on the activity of a relatively small number of neurons.  相似文献   

12.
针对传统模糊C均值聚类算法对结构复杂图像分割效果不理想的问题,提出一种基于视觉感知的模糊C均值聚类算法.首先,在分析视皮层神经元感受野性质的基础上,建立视神经元细胞响应函数来计算图像的结构特征.其次,定义一种斜坡函数从仿生学的角度来模拟人眼对相对亮度变化的感知,用来计算图像中像素点与聚类中心点之间的差异.所提模型充分考虑了邻域刺激对中心神经元影响的方向性、位置相对性和周期性,比较精确地描述了图像的结构信息,有效地抑制了噪声和复杂纹理的干扰.实验结果表明,本文算法克服了传统模糊C均值聚类算法的缺点,实现了具有复杂背景图像的精确分割.  相似文献   

13.
Symmetry perception in an insect   总被引:11,自引:0,他引:11  
Giurfa M  Eichmann B  Menzel R 《Nature》1996,382(6590):458-461
Symmetrical visual patterns have a salient status in human perception, as evinced by their prevalent occurrence in art, and also in animal perception, where they may be an indicator of phenotypic and genotypic quality. Symmetry perception has been demonstrated in humans, birds, dolphins and apes. Here we show that bees trained to discriminate bilaterally symmetrical from non-symmetrical patterns learn the task and transfer it appropriately to novel stimuli, thus demonstrating a capacity to detect and generalize symmetry or asymmetry. We conclude that bees, and possibly flower-visiting insects in general, can acquire a generalized preference towards symmetrical or, alternatively, asymmetrical patterns depending on experience, and that symmetry detection is preformed or can be learned as perceptual category by insects, because it can be extracted as an independent visual pattern feature. Bees show a predisposition for learning and generalized symmetry because, if trained to it, they choose it more frequently, come closer to and hover longer in front of the novel symmetrical stimuli than the bees trained for asymmetry do for the novel asymmetrical stimuli. Thus, even organisms with comparatively small nervous systems can generalize about symmetry, and favour symmetrical over asymmetrical patterns.  相似文献   

14.
Visual stimuli occurring naturally are rich in instances of objects delineated from the backgrounds only by differences in luminance,which is called first-order stimuli,as well as those defined by differences of contrast or texture,referred to as second-order stimuli. The neuronal mechanism for processing second-order stimuli is still unclear. In this study,we compared the responses of cat LGN (lateral geniculate nucleus) cells to second-order stimuli at five temporal frequencies to their responses to first-order stimuli. Our results showed that most LGN cells can be evoked by second-order stimuli,and their firing rates to second-order stimuli decreased relative to first-order stimuli as temporal frequency increased from 0.5 to 8 Hz; moreover the ratio of a nonlinear to linear factor had a higher value in the responses to second-order stimuli than to first-order stimuli. We also found that the responses of Y-cells to second-order stimuli were significantly higher than the responses of X-cells,suggesting the Y-cells have a more important role in the processing of second-order stimuli. All these results reveal that first-order and second-order signals might be processed in separate 'streams' of the visual sys-tem.  相似文献   

15.
Gutnisky DA  Dragoi V 《Nature》2008,452(7184):220-224
Our perception of the environment relies on the capacity of neural networks to adapt rapidly to changes in incoming stimuli. It is increasingly being realized that the neural code is adaptive, that is, sensory neurons change their responses and selectivity in a dynamic manner to match the changes in input stimuli. Understanding how rapid exposure, or adaptation, to a stimulus of fixed structure changes information processing by cortical networks is essential for understanding the relationship between sensory coding and behaviour. Physiological investigations of adaptation have contributed greatly to our understanding of how individual sensory neurons change their responses to influence stimulus coding, yet whether and how adaptation affects information coding in neural populations is unknown. Here we examine how brief adaptation (on the timescale of visual fixation) influences the structure of interneuronal correlations and the accuracy of population coding in the macaque (Macaca mulatta) primary visual cortex (V1). We find that brief adaptation to a stimulus of fixed structure reorganizes the distribution of correlations across the entire network by selectively reducing their mean and variability. The post-adaptation changes in neuronal correlations are associated with specific, stimulus-dependent changes in the efficiency of the population code, and are consistent with changes in perceptual performance after adaptation. Our results have implications beyond the predictions of current theories of sensory coding, suggesting that brief adaptation improves the accuracy of population coding to optimize neuronal performance during natural viewing.  相似文献   

16.
Bayley PJ  Frascino JC  Squire LR 《Nature》2005,436(7050):550-553
Habit memory is thought to involve slowly acquired associations between stimuli and responses and to depend on the basal ganglia. Habit memory has been well studied in experimental animals but is poorly understood in humans because of their strong tendency to acquire information as conscious (declarative) knowledge. Here we show that humans have a robust capacity for gradual trial-and-error learning that operates outside awareness for what is learned and independently of the medial temporal lobe. We tested two patients with large medial temporal lobe lesions and no capacity for declarative memory. Both patients gradually acquired a standard eight-pair object discrimination task over many weeks but at the start of each session could not describe the task, the instructions or the objects. The acquired knowledge was rigidly organized, and performance collapsed when the task format was altered.  相似文献   

17.
Selective gating of visual signals by microstimulation of frontal cortex   总被引:21,自引:0,他引:21  
Moore T  Armstrong KM 《Nature》2003,421(6921):370-373
Several decades of psychophysical and neurophysiological studies have established that visual signals are enhanced at the locus of attention. What remains a mystery is the mechanism that initiates biases in the strength of visual representations. Recent evidence argues that, during spatial attention, these biases reflect nascent saccadic eye movement commands. We examined the functional interaction of saccade preparation and visual coding by electrically stimulating sites within the frontal eye fields (FEF) and measuring its effect on the activity of neurons in extrastriate visual cortex. Here we show that visual responses in area V4 could be enhanced after brief stimulation of retinotopically corresponding sites within the FEF using currents below that needed to evoke saccades. The magnitude of the enhancement depended on the effectiveness of receptive field stimuli as well as on the presence of competing stimuli outside the receptive field. Stimulation of non-corresponding FEF representations could suppress V4 responses. The results suggest that the gain of visual signals is modified according to the strength of spatially corresponding eye movement commands.  相似文献   

18.
Attentional modulation in visual cortex depends on task timing   总被引:7,自引:0,他引:7  
Ghose GM  Maunsell JH 《Nature》2002,419(6907):616-620
Paying attention to a stimulus selectively increases the ability to process it. For example, when subjects attend to a specific region of a visual scene, their sensitivity to changes at that location increases. A large number of studies describe the behavioural consequences and neurophysiological correlates of attending to spatial locations. There has, in contrast, been little study of the allocation of attention over time. Because subjects can anticipate predictable events with great temporal precision, it seems probable that they might dynamically shift their attention when performing a familiar perceptual task whose constraints changed over time. We trained monkeys to respond to a stimulus change where the probability of occurrence changed over time. Recording from area V4 of the visual cortex in these animals, we found that the modulation of neuronal responses changed according to the probability of the change occurring at that instant. Thus, we show that the attentional modulation of sensory neurons reflects a subject's anticipation of the timing of behaviourally relevant events.  相似文献   

19.
Left neglect for near but not far space in man   总被引:16,自引:0,他引:16  
P W Halligan  J C Marshall 《Nature》1991,350(6318):498-500
It has been suggested that, among the many visual areas of the human brain, there might be one set of spatial maps specialized for 'near' (peripersonal) and another for 'far' (extrapersonal) space. A distinction between 'grasping distance' and 'walking distance', or between a 'reaching field' and a pointing or throwing field has commonly been made. Evidence for such a division has been found in monkeys. Unilateral ablation of the frontal eye field (area 8) produces a more prominent inattention (or 'neglect') for objects in contralesional far space than in near space; by contrast, unilateral ablation of frontal area 6, which receives direct projections from area 7b (the rostral part of the inferior parietal lobules) results in inattention to visual stimuli limited to contralesional near space. Despite predictions that comparable dissociations should be found in man, there has been no convincing evidence. We report here such evidence in a patient with a unilateral right hemisphere stroke. Within peripersonal space, he showed severe left visuo-spatial neglect on conventional tests, including the highly sensitive task of line bisection. When line bisection was performed in extrapersonal space, neglect was abolished or attenuated.  相似文献   

20.
本实验采用了视听双通道伪同时呈现的oddball模式,以汉字和简单几何图形为视觉刺激,1000Hz和800Hz的纯音为听觉刺激,使用注意通道(注意和非注意条件)×刺激概率(偏差刺激概率均为15%,标准刺激的概率均为85%)的2×2因素设计,来研究视觉和听觉偏差刺激在注意和非注意条件下诱发的事件相关电位(ERPs)。实验中视觉和听觉刺激随机序列地呈现给被试(刺激间隔ISI为700~1300ms),被试被要求注意某一通道如视觉通道,而相应地忽视另一通道即听觉通道,以左右手触键反应,如左手反应视觉偏差刺激,右手反应视觉标准刺激。结果表明,听觉偏差刺激在注意和非注意条件下均诱发了类似的不匹配负波(MMN);而视觉偏差刺激在注意和非注意条件下没有诱发MMN或类似MMN的成分,这是因为视觉系统的平行加工特性和难以对视觉影像产生记忆痕迹。听觉偏差刺激在注意条件下重迭了N2b成分并跟随了P3a成分,这种重迭和跟随反映了选择注意中的定向反应。注意条件下听觉和视觉的偏差刺激诱发了较大波幅的P300成分,反映了工作记忆中的表象更新。本实验的结果支持Naatanen对MMN所做的观察,听觉偏差刺激所诱发的MMN与注意条件的无关性反映了听觉通道中感觉刺激特征的自动化加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号