首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ibn-Elhaj M  Schadt M 《Nature》2001,410(6830):796-799
Light reflection from computer monitors, car dashboards and any other optical surface can impair the legibility of displays, degrade transmission of optical components and in some cases may even pose safety hazards. Antireflective coatings are therefore widely used, but existing antireflection technologies often perform sub-optimally or are expensive to implement. Here we present an alternative approach to antireflection coatings, based on an extension of our photo-aligning and photo-patterning technology for liquid-crystal displays (LCDs) and liquid-crystal polymer films with smooth surfaces to optical polymer films with controlled surface topologies. Nano- and micro-corrugated topologies are shown to result from optically induced monomer phase-separation on the polymer surfaces. The properties of the resulting films make them suitable high-performance and low-cost antireflection coatings for optical components of virtually any size, shape and material. Moreover, the approach can be used to form a wide range of other functional polymer thin films with isotropic as well as anisotropic topologies. For example, films can be produced whose optical birefringence exceeds that of the birefringence of the polymer material itself. These new films can also be used as diffractive thin films, diffusers, and directional reflectors which preserve light polarization, or as substrates for aligning liquid crystals to produce bright, low-power-consumption LCDs with integrated optical functions and memory.  相似文献   

2.
Motoyoshi I  Nishida S  Sharan L  Adelson EH 《Nature》2007,447(7141):206-209
The world is full of surfaces, and by looking at them we can judge their material qualities. Properties such as colour or glossiness can help us decide whether a pancake is cooked, or a patch of pavement is icy. Most studies of surface appearance have emphasized textureless matte surfaces, but real-world surfaces, which may have gloss and complex mesostructure, are now receiving increased attention. Their appearance results from a complex interplay of illumination, reflectance and surface geometry, which are difficult to tease apart given an image. If there were simple image statistics that were diagnostic of surface properties it would be sensible to use them. Here we show that the skewness of the luminance histogram and the skewness of sub-band filter outputs are correlated with surface gloss and inversely correlated with surface albedo (diffuse reflectance). We find evidence that human observers use skewness, or a similar measure of histogram asymmetry, in making judgements about surfaces. When the image of a surface has positively skewed statistics, it tends to appear darker and glossier than a similar surface with lower skewness, and this is true whether the skewness is inherent to the original image or is introduced by digital manipulation. We also find a visual after-effect based on skewness: adaptation to patterns with skewed statistics can alter the apparent lightness and glossiness of surfaces that are subsequently viewed. We suggest that there are neural mechanisms sensitive to skewed statistics, and that their outputs can be used in estimating surface properties.  相似文献   

3.
以含有聚环氧乙烷(PEO)和侧链含有查尔酮的聚甲基丙烯酸甲酯(PMA)的二嵌段共聚物(PEO272-b-PMA(Chal)97)为原料,以不同浓度的醋酸纤维素CA(Cellulose acetate)溶液制成的薄膜作为牺牲层,利用相分离法制备具有贯通结构的自支撑薄膜。结果表明:CA的浓度对嵌段共聚物的自组装薄膜的性质产生较大的影响。在一定浓度范围(≤9%)内,薄膜的性质如表面的平滑性、亲疏水性以及通道的尺寸和分布的均匀性等随CA浓度的增加而更优化。  相似文献   

4.
Geometry-dominated fluid adsorption on sculpted solid substrates   总被引:1,自引:0,他引:1  
Rascón C  Parry AO 《Nature》2000,407(6807):986-989
The shape and chemical composition of solid surfaces can be controlled at a mesoscopic scale. Exposing such structured substrates to a gas that is close to coexistence with its liquid phase can produce quite distinct adsorption characteristics compared to those of planar systems, which may be important for technologies such as super-repellent surfaces or micro-fluidics. Recent studies have concentrated on the adsorption of liquids on rough and heterogeneous substrates, and the characterization of nanoscopic liquid films. But the fundamental effect of geometry on the adsorption of a fluid from the gas phase has hardly been addressed. Here we present a simple theoretical model which shows that varying the shape of the substrate can exert a profound influence on the adsorption isotherms of liquids. The model smoothly connects wetting and capillary condensation through a number of examples of fluid interfacial phenomena, and opens the possibility of tailoring the adsorption properties of solid substrates by sculpting their surface shape.  相似文献   

5.
Baksh MM  Jaros M  Groves JT 《Nature》2004,427(6970):139-141
The molecular architecture of-and biochemical processes within--cell membranes play important roles in all living organisms, with many drugs and infectious disease agents targeting membranes. Experimental studies of biochemical reactions on membrane surfaces are challenging, as they require a membrane environment that is fluid (like cell membranes) but nevertheless allows for the efficient detection and characterization of molecular interactions. One approach uses lipid membranes supported on solid substrates such as silica or polymers: although the membrane is trapped near the solid interface, it retains natural fluidity and biological functionality and can be implanted with membrane proteins for functional studies. But the detection of molecular interactions involving membrane-bound species generally requires elaborate techniques, such as surface plasmon resonance or total internal reflection fluorescence microscopy. Here we demonstrate that colloidal phase transitions of membrane-coated silica beads provide a simple and label-free method for monitoring molecular interactions on lipid membrane surfaces. By adjusting the lipid membrane composition and hence the pair interaction potential between the membrane-supporting silica beads, we poise our system near a phase transition so that small perturbations on the membrane surface induce dramatic changes in the macroscopic organization of the colloid. We expect that this approach, used here to probe with high sensitivity protein binding events at membrane surfaces, can be applied to study a broad range of cell membrane processes.  相似文献   

6.
磁流变弹性体及其半主动吸振技术   总被引:1,自引:0,他引:1  
磁流变材料是一类智能材料的总称,它们的流变特性能够用外加的磁场来控制.磁流变弹性体是这类材料中的新成员,它是将微米尺度的软磁性颗粒混合于液态或粘塑性体高分子聚合物中,形成特殊有序结构后固化而成.其典型特征是弹性剪切模量可由外场控制,此外它还具备其他磁控性能如磁控电阻等.这些独特的优点使其在调谐吸振器、可调刚度的悬挂系统和可调阻抗表面等领域有着巨大的应用前景.论文介绍我们课题组近年来在磁流变弹性体的研制、力学性能的实验和理论表征,及其在半主动吸振技术中的应用等方面的研究.  相似文献   

7.
充氢官能团可以很强地吸附于金表面上,从而可作为连接体用于纳米电子学中的分子器件。我们从第一性原理出发利用密度泛函理论研究了SH-C8H16-SH分子和金表面的相互作用,并利用前线轨道理论和微扰理论定量地确定了该相互作用能常数。  相似文献   

8.
对丙纶经浓硫酸和重铬酸钾溶液氧化处理后的表面性能,如比表面、回潮率、比重、强度损失和粘合性等进行初步研究。通过实验表明,浓硫酸和重铬酸钾溶液有刻蚀扩孔的作用,并能引进如羧基和羟基等亲水性基团。适当地控制氧化时间及氧化剂的腐蚀能力,有可能在丙纶强度损失较小的情况下,使其具有一定的表面活性,其界面粘合效果也能提高,有利于制造丙纶复合材料。  相似文献   

9.
In the field of molecular modeling and simulation, molecular surface meshes are necessary for many problems, such as molecular structure visualization and analysis, docking problem and implicit solvent modeling and simulation. Recently, with the developments of advanced mathematical modeling in the field of implicit solvent modeling and simulation, providing surface meshes with good qualities efficiently for large real biomolecular systems becomes an urgent issue beyond its traditional purposes for visualization and geometry analyses for molecular structure. In this review, we summarize recent works on this issue. First, various definitions of molecular surfaces and corresponding meshing methods are introduced. Second, our recent meshing tool, TMSmesh, and its performances are presented. Finally, we show the applications of the molecular surface mesh in implicit solvent modeling and simulations using boundary element method (BEM) and finite element method (FEM).  相似文献   

10.
Gandhi DD  Lane M  Zhou Y  Singh AP  Nayak S  Tisch U  Eizenberg M  Ramanath G 《Nature》2007,447(7142):299-302
Self-assembled molecular nanolayers (MNLs) composed of short organic chains and terminated with desired functional groups are attractive for modifying surface properties for a variety of applications. For example, organosilane MNLs are used as lubricants, in nanolithography, for corrosion protection and in the crystallization of biominerals. Recent work has explored uses of MNLs at thin-film interfaces, both as active components in molecular devices, and as passive layers, inhibiting interfacial diffusion, promoting adhesion and toughening brittle nanoporous structures. The relatively low stability of MNLs on surfaces at temperatures above 350-400 degrees C (refs 12, 13), as a result of desorption or degradation, limits the use of surface MNLs in high-temperature applications. Here we harness MNLs at thin-film interfaces at temperatures higher than the MNL desorption temperature to fortify copper-dielectric interfaces relevant to wiring in micro- and nano-electronic devices. Annealing Cu/MNL/SiO2 structures at 400-700 degrees C results in interfaces that are five times tougher than pristine Cu/SiO2 structures, yielding values exceeding approximately 20 J m(-2). Previously, similarly high toughness values have only been obtained using micrometre-thick interfacial layers. Electron spectroscopy of fracture surfaces and density functional theory modelling of molecular stretching and fracture show that toughening arises from thermally activated interfacial siloxane bridging that enables the MNL to be strongly linked to both the adjacent layers at the interface, and suppresses MNL desorption. We anticipate that our findings will open up opportunities for molecular-level tailoring of a variety of interfacial properties, at processing temperatures higher than previously envisaged, for applications where microlayers are not a viable option-such as in nanodevices or in thermally resistant molecular-inorganic hybrid devices.  相似文献   

11.
Conventional methods for solving intersections between two offset parametric surfaces often include iteratively using computationally expensive SSI (surface/surface intersections) algorithm. In addition, these methods ignore the relations between the intersection curves of parametric surfaces with different offset distances. The algorithm presented in this paper, makes full use of the topological relations between different intersection loops and calculates intersection loops with the help of previously calculated intersection loops. It first pre-processes two parametric surfaces to obtain the characteristic points, called topology transition points (TTPs), which can help in the subsequent finding of the topologies of the intersection curves. Then these points are categorized into several distinct groups, and we can determine the calculation strategy for searching initial points by analyzing the properties of these TTPs on the surfaces. Hence, all intersection curves can be marched from initial points by the tracing algorithm. The proposed algorithm could calculate intersection curves robustly and effectively, and has been tested to be capable of overcoming the degenerate conditions such as loop and singularities leaking that occur frequently in conventional algorithms.  相似文献   

12.
In this paper,we report the tribological properties of self-assembled molecular(SAM) films of fluoroalkylsilanes and non-fluoroalkylsilanes,with different chain-lengths,adsorbed on Si substrate surfaces by covalent bonds.The SAM films were characterized using a universal ball-disk experimental tester in aqueous solutions.The substrate surface was examined by X-ray photoelectron spectroscopy(XPS),and the SAM films adsorbed on the Si surfaces were inspected by contact angle measurements and XPS.Lubrication studies revealed that several kinds of fluoroalkylsilanes had similar friction coefficients;the small differences were attributed to the chain flexibility.In contrast,differences in the aqueous lubrication properties of SAM films of non-fluoroalkylsilanes were clearly identified.It is suggested that substitution with fluorine atoms and the surface affinities of fluoroalkylsilanes contributed to redistribution of surface changes,causing variations in lubrication behaviors.  相似文献   

13.
Armatas GS  Kanatzidis MG 《Nature》2006,441(7097):1122-1125
Regular mesoporous oxide materials have been widely studied and have a range of potential applications, such as catalysis, absorption and separation. They are not generally considered for their optical and electronic properties. Elemental semiconductors with nanopores running through them represent a different form of framework material with physical characteristics contrasting with those of the more conventional bulk, thin film and nanocrystalline forms. Here we describe cubic mesostructured germanium, MSU-Ge-1, with gyroidal channels containing surfactant molecules, separated by amorphous walls that lie on the gyroid (G) minimal surface as in the mesoporous silica MCM-48 (ref. 2). Although Ge is a high-melting, covalent semiconductor that is difficult to prepare from solution polymerization, we succeeded in assembling a continuous Ge network using a suitable precursor for Ge(4-) atoms. Our results indicate that elemental semiconductors from group 14 of the periodic table can be made to adopt mesostructured forms such as MSU-Ge-1, which features two three-dimensional labyrinthine tunnels obeying Ia3d space group symmetry and separated by a continuous germanium minimal surface that is otherwise amorphous. A consequence of this new structure for germanium, which has walls only one nanometre thick, is a wider electronic energy bandgap (1.4 eV versus 0.66 eV) than has crystalline or amorphous Ge. Controlled oxidation of MSU-Ge-1 creates a range of germanium suboxides with continuously varying Ge:O ratio and a smoothly increasing energy gap.  相似文献   

14.
Metal-organic microporous materials (MOMs) have attracted wide scientific attention owing to their unusual structure and properties, as well as commercial interest due to their potential applications in storage, separation and heterogeneous catalysis. One of the advantages of MOMs compared to other microporous materials, such as activated carbons, is their ability to exhibit a variety of pore surface properties such as hydrophilicity and chirality, as a result of the controlled incorporation of organic functional groups into the pore walls. This capability means that the pore surfaces of MOMs could be designed to adsorb specific molecules; but few design strategies for the adsorption of small molecules have been established so far. Here we report high levels of selective sorption of acetylene molecules as compared to a very similar molecule, carbon dioxide, onto the functionalized surface of a MOM. The acetylene molecules are held at a periodic distance from one another by hydrogen bonding between two non-coordinated oxygen atoms in the nanoscale pore wall of the MOM and the two hydrogen atoms of the acetylene molecule. This permits the stable storage of acetylene at a density 200 times the safe compression limit of free acetylene at room temperature.  相似文献   

15.
A fundamental step towards atomic- or molecular-scale spintronic devices has recently been made by demonstrating that the spin of an individual atom deposited on a surface, or of a small paramagnetic molecule embedded in a nanojunction, can be externally controlled. An appealing next step is the extension of such a capability to the field of information storage, by taking advantage of the magnetic bistability and rich quantum behaviour of single-molecule magnets (SMMs). Recently, a proof of concept that the magnetic memory effect is retained when SMMs are chemically anchored to a metallic surface was provided. However, control of the nanoscale organization of these complex systems is required for SMMs to be integrated into molecular spintronic devices. Here we show that a preferential orientation of Fe(4) complexes on a gold surface can be achieved by chemical tailoring. As a result, the most striking quantum feature of SMMs-their stepped hysteresis loop, which results from resonant quantum tunnelling of the magnetization-can be clearly detected using synchrotron-based spectroscopic techniques. With the aid of multiple theoretical approaches, we relate the angular dependence of the quantum tunnelling resonances to the adsorption geometry, and demonstrate that molecules predominantly lie with their easy axes close to the surface normal. Our findings prove that the quantum spin dynamics can be observed in SMMs chemically grafted to surfaces, and offer a tool to reveal the organization of matter at the nanoscale.  相似文献   

16.
Previous observations on the structural and functional properties of porin, the matrix protein of Escherichia coli, have indicated that the channel-forming trimers span the outer membranes of the bacterial cell, forming a molecular sieve. By using electron microscopy and image reconstruction, we demonstrate here that three channels on the outer surface of the cell merge into a single channel at the periplasmic face. Conductance measurements using conditions under which single activated triplets could be observed led us to conclude that the three individual consecutive closing steps reflect three channels within a single trimeric unit. Statistical analysis of conductance levels revealed that the first relaxation step is distinctly smaller than the two subsequent channel closings. This functional observation can be explained if the channels of porin trimers coalesce.  相似文献   

17.
Whaley SR  English DS  Hu EL  Barbara PF  Belcher AM 《Nature》2000,405(6787):665-668
In biological systems, organic molecules exert a remarkable level of control over the nucleation and mineral phase of inorganic materials such as calcium carbonate and silica, and over the assembly of crystallites and other nanoscale building blocks into complex structures required for biological function. This ability to direct the assembly of nanoscale components into controlled and sophisticated structures has motivated intense efforts to develop assembly methods that mimic or exploit the recognition capabilities and interactions found in biological systems. Of particular value would be methods that could be applied to materials with interesting electronic or optical properties, but natural evolution has not selected for interactions between biomolecules and such materials. However, peptides with limited selectivity for binding to metal surfaces and metal oxide surfaces have been successfully selected. Here we extend this approach and show that combinatorial phage-display libraries can be used to evolve peptides that bind to a range of semiconductor surfaces with high specificity, depending on the crystallographic orientation and composition of the structurally similar materials we have used. As electronic devices contain structurally related materials in close proximity, such peptides may find use for the controlled placement and assembly of a variety of practically important materials, thus broadening the scope for 'bottom-up' fabrication approaches.  相似文献   

18.
Channelrhodopsins (ChRs) are light-gated cation channels derived from algae that have shown experimental utility in optogenetics; for example, neurons expressing ChRs can be optically controlled with high temporal precision within systems as complex as freely moving mammals. Although ChRs have been broadly applied to neuroscience research, little is known about the molecular mechanisms by which these unusual and powerful proteins operate. Here we present the crystal structure of a ChR (a C1C2 chimaera between ChR1 and ChR2 from Chlamydomonas reinhardtii) at 2.3?? resolution. The structure reveals the essential molecular architecture of ChRs, including the retinal-binding pocket and cation conduction pathway. This integration of structural and electrophysiological analyses provides insight into the molecular basis for the remarkable function of ChRs, and paves the way for the precise and principled design of ChR variants with novel properties.  相似文献   

19.
Sterzik MF  Bagnulo S  Palle E 《Nature》2012,483(7387):64-66
Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700?nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.  相似文献   

20.
为了提高6061铝合金材料表面硬度、强度和耐磨性等机械性能。通过振脉冲空化射流束冲击6061铝材料表面。测量和分析未处理表面和15、20、25MPa三种工作压力下射流束冲击试样1、2、3、4、5min后材料表面微观组织形貌、试样表面轮廓、粗糙度Ra值、Rz值和表面硬度层等因素的变化,定性及定量研究自振脉冲空化射流技术对材料表面机械性能的影响规律。结果表明,与未处理表面相比,15MPa时射流束未对材料表面造成严重塑性变形,其表面只存在极少不均微坑,Ra值增加0.25,硬度HV增加15%,强化效果不明显;20MPa时射流束对材料表面产生严重塑性变形,能够明显观测到表面存在密集且均匀的凹坑分布,Ra值增加1.2,硬度HV增加78.3%,强化效果较好;25MPa时射流束对材料表面产生过度塑性变形,Ra值增加7.5,硬度HV增加81.3%,材料表层发生剥蚀现象,影响到材料的使用性能。可见,在工作压力20MPa,冲击时间3min,靶距20mm时自振脉冲空化射流技术对材料表面强化效果最好,材料机械性能提高近2倍且表面改性极小。此技术对提升材料表面耐磨性及硬度强化效果起到极为显著作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号