首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
Kitajima TS  Kawashima SA  Watanabe Y 《Nature》2004,427(6974):510-517
Meiosis comprises a pair of specialized nuclear divisions that produce haploid germ cells. To accomplish this, sister chromatids must segregate together during the first meiotic division (meiosis I), which requires that sister chromatid cohesion persists at centromeres. The factors that protect centromeric cohesion during meiosis I have remained elusive. Here we identify Sgo1 (shugoshin), a protector of the centromeric cohesin Rec8 in fission yeast. We also identify a homologue of Sgo1 in budding yeast. We provide evidence that shugoshin is widely conserved among eukaryotes. Moreover, we identify Sgo2, a paralogue of shugoshin in fission yeast, which is required for faithful mitotic chromosome segregation. Localization of Sgo1 and Sgo2 at centromeres requires the kinase Bub1, identifying shugoshin as a crucial target for the kinetochore function of Bub1. These findings provide insights into the evolution of meiosis and kinetochore regulation during mitosis and meiosis.  相似文献   

2.
Segregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesin's Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins. Here we show in both fission and budding yeast that Sgo1 recruits to centromeres a specific form of protein phosphatase 2A (PP2A). Its inactivation causes loss of centromeric cohesin at anaphase I and random segregation of sister centromeres at the second meiotic division. Artificial recruitment of PP2A to chromosome arms prevents Rec8 phosphorylation and hinders resolution of chiasmata. Our data are consistent with the notion that efficient cleavage of Rec8 requires phosphorylation of cohesin and that this is blocked by PP2A at meiosis I centromeres.  相似文献   

3.
Shugoshin collaborates with protein phosphatase 2A to protect cohesin   总被引:1,自引:0,他引:1  
Sister chromatid cohesion, mediated by a complex called cohesin, is crucial--particularly at centromeres--for proper chromosome segregation in mitosis and meiosis. In animal mitotic cells, phosphorylation of cohesin promotes its dissociation from chromosomes, but centromeric cohesin is protected by shugoshin until kinetochores are properly captured by the spindle microtubules. However, the mechanism of shugoshin-dependent protection of cohesin is unknown. Here we find a specific subtype of serine/threonine protein phosphatase 2A (PP2A) associating with human shugoshin. PP2A colocalizes with shugoshin at centromeres and is required for centromeric protection. Purified shugoshin complex has an ability to reverse the phosphorylation of cohesin in vitro, suggesting that dephosphorylation of cohesin is the mechanism of protection at centromeres. Meiotic shugoshin of fission yeast also associates with PP2A, with both proteins collaboratively protecting Rec8-containing cohesin at centromeres. Thus, we have revealed a conserved mechanism of centromeric protection of eukaryotic chromosomes in mitosis and meiosis.  相似文献   

4.
Brar GA  Kiburz BM  Zhang Y  Kim JE  White F  Amon A 《Nature》2006,441(7092):532-536
During meiosis, cohesins--protein complexes that hold sister chromatids together--are lost from chromosomes in a step-wise manner. Loss of cohesins from chromosome arms is necessary for homologous chromosomes to segregate during meiosis I. Retention of cohesins around centromeres until meiosis II is required for the accurate segregation of sister chromatids. Here we show that phosphorylation of the cohesin subunit Rec8 contributes to step-wise cohesin removal. Our data further implicate two other key regulators of meiotic chromosome segregation, the cohesin protector Sgo1 and meiotic recombination in bringing about the step-wise loss of cohesins and thus the establishment of the meiotic chromosome segregation pattern. Understanding the interplay between these processes should provide insight into the events underlying meiotic chromosome mis-segregation, the leading cause of miscarriages and mental retardation in humans.  相似文献   

5.
6.
Watanabe Y  Yokobayashi S  Yamamoto M  Nurse P 《Nature》2001,409(6818):359-363
Meiosis is initiated from G1 of the cell cycle and is characterized by a pre-meiotic S phase followed by two successive nuclear divisions. The first of these, meiosis I, differs from mitosis in having a reductional pattern of chromosome segregation. Here we show that meiosis can be initiated from G2 in fission yeast cells by ectopically activating the meiosis-inducing network. The subsequent meiosis I occurs without a pre-meiotic S phase and with decreased recombination, and exhibits a mitotic pattern of equational chromosome segregation. The subsequent meiosis II results in random chromosome segregation. This behaviour is similar to that observed in cells lacking the meiotic cohesin Rec8 (refs 3, 4), which becomes associated with chromosomes at G1/S phase, including the inner centromere, a region that is probably critical for sister-centromere orientation. If the expression of Rec8 is delayed to S phase/G2, then the centromeres behave equationally. We propose that the presence of Rec8 in chromatin is required at the pre-meiotic S phase to construct centromeres that behave reductionally and chromosome arms capable of a high level of recombination, and that this explains why meiosis is initiated from G1 of the cell cycle.  相似文献   

7.
During cell division, sister chromosomes segregate from each other on a microtubule-based structure called the mitotic spindle. Proteins bind to the centromere, a region of chromosomal DNA, to form the kinetochore, which mediates chromosome attachment to the mitotic spindle microtubules. In the budding yeast Saccharomyces cerevisiae, genetic analysis has shown that the 28-basepair (bp) CDEIII region of the 125-bp centromere DNA sequence (CEN sequence) is the main region controlling chromosome segregation in vivo. Therefore it is likely that proteins binding to the CDEIII region link the centromeres to the microtubules during mitosis. A complex of proteins (CBF3) that binds specifically to the CDEIII DNA sequence has been isolated by affinity chromatography. Here we describe kinetochore function in vitro. The CBF3 complex can link DNA to microtubules, and the complex contains a minus-end-directed microtubule-based motor. We suggest that microtubule-based motors form the fundamental link between microtubules and chromosomes at mitosis.  相似文献   

8.
Cohesin Rec8 is required for reductional chromosome segregation at meiosis.   总被引:41,自引:0,他引:41  
Y Watanabe  P Nurse 《Nature》1999,400(6743):461-464
When cells exit from mitotic cell division, their sister chromatids lose cohesion and separate to opposite poles of the dividing cell, resulting in equational chromosome segregation. In contrast, the reductional segregation of the first stage of meiotic cell division (meiosis I) requires that sister chromatids remain associated through their centromeres and move together to the same pole. Centromeric cohesion is lost as cells exit from meiosis II and sister chromatids can then separate. The fission yeast cohesin protein Rec8 is specific to and required for meiosis. Here we show that Rec8 appears in the centromeres and adjacent chromosome arms during the pre-meiotic S phase. Centromeric Rec8 persists throughout meiosis I and disappears at anaphase of meiosis II. When the rec8 gene is deleted, sister chromatids separate at meiosis I, resulting in equational rather than reductional chromosome segregation. We propose that the persistence of Rec8 at centromeres during meiosis I maintains sister-chromatid cohesion, and that its presence in the centromere-adjacent regions orients the kinetochores so that sister chromatids move to the same pole. This results in the reductional pattern of chromosome segregation necessary to reduce a diploid zygote to haploid gametes.  相似文献   

9.
Tada K  Susumu H  Sakuno T  Watanabe Y 《Nature》2011,474(7352):477-483
Chromosome structure is dynamically regulated during cell division, and this regulation is dependent, in part, on condensin. The localization of condensin at chromosome arms is crucial for chromosome partitioning during anaphase. Condensin is also enriched at kinetochores but its precise role and loading machinery remain unclear. Here we show that fission yeast (Schizosaccharomyces pombe) kinetochore proteins Pcs1 and Mde4--homologues of budding yeast (Saccharomyces cerevisiae) monopolin subunits and known to prevent merotelic kinetochore orientation--act as a condensin 'recruiter' at kinetochores, and that condensin itself may act to clamp microtubule binding sites during metaphase. In addition to the regional recruitment factors, overall condensin association with chromatin is governed by the chromosomal passenger kinase Aurora B. Aurora-B-dependent phosphorylation of condensin promotes its association with histone H2A and H2A.Z, which we identify as conserved chromatin 'receptors' of condensin. Condensin phosphorylation and its deposition onto chromosome arms reach a peak during anaphase, when Aurora B kinase relocates from centromeres to the spindle midzone, where the separating chromosome arms are positioned. Our results elucidate the molecular basis for the spatiotemporal regulation of mitotic chromosome architecture, which is crucial for chromosome partitioning.  相似文献   

10.
11.
Chan RC  Chan A  Jeon M  Wu TF  Pasqualone D  Rougvie AE  Meyer BJ 《Nature》2003,423(6943):1002-1009
Faithful transmission of the genome requires that a protein complex called cohesin establishes and maintains the regulated linkage between replicated chromosomes before their segregation. Here we report the unforeseen participation of Caenorhabditis elegans TIM-1, a paralogue of the Drosophila clock protein TIMELESS, in the regulation of chromosome cohesion. Our biochemical experiments defined the C. elegans cohesin complex and revealed its physical association with TIM-1. Functional relevance of the interaction was demonstrated by aberrant mitotic chromosome behaviour, embryonic lethality and defective meiotic chromosome cohesion caused by the disruption of either TIM-1 or cohesin. TIM-1 depletion prevented the assembly of non-SMC (structural maintenance of chromosome) cohesin subunits onto meiotic chromosomes; however, unexpectedly, a partial cohesin complex composed of SMC components still loaded. Further disruption of cohesin activity in meiosis by the simultaneous depletion of TIM-1 and an SMC subunit decreased homologous chromosome pairing before synapsis, revealing a new role for cohesin in metazoans. On the basis of comparisons between TIMELESS homologues in worms, flies and mice, we propose that chromosome cohesion, rather than circadian clock regulation, is the ancient and conserved function for TIMELESS-like proteins.  相似文献   

12.
In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate α-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the αN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg?80 and Gly?81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.  相似文献   

13.
Zhou Z  Feng H  Zhou BR  Ghirlando R  Hu K  Zwolak A  Miller Jenkins LM  Xiao H  Tjandra N  Wu C  Bai Y 《Nature》2011,472(7342):234-237
The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3-H4)(2) heterotetramer and are required for the deposition of CenH3 at centromeres in vivo. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved amino terminus and a shorter α-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.  相似文献   

14.
15.
16.
Guse A  Carroll CW  Moree B  Fuller CJ  Straight AF 《Nature》2011,477(7364):354-358
During cell division, chromosomes are segregated to nascent daughter cells by attaching to the microtubules of the mitotic spindle through the kinetochore. Kinetochores are assembled on a specialized chromatin domain called the centromere, which is characterized by the replacement of nucleosomal histone H3 with the histone H3 variant centromere protein A (CENP-A). CENP-A is essential for centromere and kinetochore formation in all eukaryotes but it is unknown how CENP-A chromatin directs centromere and kinetochore assembly. Here we generate synthetic CENP-A chromatin that recapitulates essential steps of centromere and kinetochore assembly in vitro. We show that reconstituted CENP-A chromatin when added to cell-free extracts is sufficient for the assembly of centromere and kinetochore proteins, microtubule binding and stabilization, and mitotic checkpoint function. Using chromatin assembled from histone H3/CENP-A chimaeras, we demonstrate that the conserved carboxy terminus of CENP-A is necessary and sufficient for centromere and kinetochore protein recruitment and function but that the CENP-A targeting domain--required for new CENP-A histone assembly--is not. These data show that two of the primary requirements for accurate chromosome segregation, the assembly of the kinetochore and the propagation of CENP-A chromatin, are specified by different elements in the CENP-A histone. Our unique cell-free system enables complete control and manipulation of the chromatin substrate and thus presents a powerful tool to study centromere and kinetochore assembly.  相似文献   

17.
Spindle checkpoint is an important biochemical signaling cascade during mitosis which monitors the fidelity of chromosome segregation, and is mediated by protein kinases Mps1 and Bub1/BubR1. Our recent studies show that kinesin-related motor protein CENP-E interacts with BubR1 and participates in spindle checkpoint signaling. To elucidate the molecular mechanisms underlying spindle checkpoint signaling, we carried out proteomic dissection of human cell kinetochore and revealed protein kinase TTK, human homologue of yeast Mps1. Our studies show that TTK is localized to the kinetochore of human cells, and interacts with CENP-E, suggesting that TTK may play an important role in chromosome segregation during mitosis.  相似文献   

18.
The Karyotypes,C-banding Patterns and AgNORs of Epinephelus malabaricus   总被引:2,自引:0,他引:2  
0 IntroductionThestudyonfishchromosomeswasstartedabroadinthethirtiesofthetwentiethcentury .Butduetoimperfectfixedmethodsandtechniques ,determinationwasstronglysubjective ,inadditionfishchromosomesbeingmuchsmallerthanthoseofhumanspeciesandothermammals ,plantsandinsects ,thereliabilityofearlyresearchresultswasratherdeviated .Afterthefifties ,thepreparation ,observationmethodsandtechniquesofhumanchromo someswereconstantlyimproved ,andin 1 970s ,variouschromosomebandingtechniqueswereestablished .…  相似文献   

19.
Higuchi T  Uhlmann F 《Nature》2005,433(7022):171-176
Microtubules of the mitotic spindle form the structural basis for chromosome segregation. In metaphase, microtubules show high dynamic instability, which is thought to aid the 'search and capture' of chromosomes for bipolar alignment on the spindle. Microtubules suddenly become more stable at the onset of anaphase, but how this change in microtubule behaviour is regulated and how important it is for the ensuing chromosome segregation are unknown. Here we show that in the budding yeast Saccharomyces cerevisiae, activation of the phosphatase Cdc14 at anaphase onset is both necessary and sufficient for silencing microtubule dynamics. Cdc14 is activated by separase, the protease that triggers sister chromatid separation, linking the onset of anaphase to microtubule stabilization. If sister chromatids separate in the absence of Cdc14 activity, microtubules maintain high dynamic instability; this correlates with defects in both the movement of chromosomes to the spindle poles (anaphase A) and the elongation of the anaphase spindle (anaphase B). Cdc14 promotes localization of microtubule-stabilizing proteins to the anaphase spindle, and dephosphorylation of the kinetochore component Ask1 contributes to both the silencing of microtubule turnover and successful anaphase A.  相似文献   

20.
For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号