首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
【目的】针对在标准协同训练中不具有充分冗余的视图分割,致使分类器错误累计过多,以及一对基分类器标记样本类别不一致的问题,提出了基尼指数结合K均值聚类的协同训练算法。【方法】该算法首先计算已标记样本中各特征的基尼指数,将该指数升序排列后均等划分到两个视图,然后在基分类器所标记的样本中,运用K均值聚类确定标记不一致样本的类别后加入标记样本。【结果】通过9个UCI数据集在3组实验上的结果表明,所提算法相较于对比算法提升了分类效果。【结论】运用基尼指数均等划分关键特征于两个视图,有利于改善视图分割不充分冗余的缺陷;K均值聚类法对分类不一致样本进行重新标记,降低了协同训练算法中的误标记率。  相似文献   

2.
【目的】针对标准协同训练中视图分割不充分冗余导致两个分类器误差累积加大,且两个分类器对同一个未标记样本分类不一致的问题,提出了结合信息增益率和K-means聚类的协同训练算法。【方法】该算法先根据有标记样本计算出数据中每一个特征的信息增益率,将信息增益率高的特征平均划分到两个视图,再在每次分类过程中应用K-means聚类确定标记不一致样本点的最终类别。【结果】通过在9个UCI数据集上的3组实验表明,与对比算法相比,所提算法中两视图分类器的平均正确率差值降低了2.9%,有效均衡了分类器性能,同时在分类准确率和算法稳定性上也有较大提升。【结论】利用信息增益率将关键特征均衡划分到两个视图,有效解决了视图分割不充分冗余问题;K-means聚类重新分类标记不一致的样本,降低了样本被误分类的概率。  相似文献   

3.
【目的】为了在迭代自训练之前探索数据集分布情况,挑选出所含信息量较大且置信度较高的无标记样本加入训练集训练,让训练出的初始分类器有较高的准确性,提高自训练方法的泛化性。【方法】以聚类假设为基础,先对无标记样本集进行密度峰值聚类,在人工地选出聚类中心后,将新的聚类中心作为模糊聚类的初始聚类中心进行模糊聚类,从而筛选出有用的无标记样本。【结果】通过使用密度峰值优化模糊聚类算法,筛选出所含信息量大且置信度高的样本加入了训练集,训练出泛化性更强、分类精度更高的分类器。【结论】实验结果表明,改进后的自训练方法能快速发现样本集原始空间结构,筛选出有用无标记样本加入训练集,与结合其他聚类算法的自训练方法相比分类精度有所提高。  相似文献   

4.
[目的]针对协同训练算法在视图分割时未考虑噪声影响和两视图分类器对无标记样本标注不一致问题,提出了基于加权主成分分析和改进密度峰值聚类的协同训练算法.[方法]首先引入加权主成分分析对数据进行预处理,通过寻求初始有标记样本中特征和类标记之间的依赖关系求得各特征加权系数,再对加权变换后的数据进行降维并提取高贡献度特征进行视图分割,这一策略能较好地过滤视图分割时引入的噪声,同时保证数据中的关键特征能均衡划分到两个视图,从而更好地实现两个分类器的协同作用;同时,在密度峰值聚类上提出一种"双拐点"法来自动选择聚类中心,利用改进后的密度峰值聚类来确定标记不一致样本的最终类别,以降低样本被误分类的概率.[结果]与对比算法相比,所提算法在分类准确率和算法稳定性上有较大提升.[结论]通过加权主成分分析能有效地过滤掉视图分割中的噪声特征,同时改进后的密度峰值聚类减少了样本被误标记的概率.  相似文献   

5.
【目的】自训练方法易选出低置信度的无标记样本去训练分类器,在训练中也易误标记无标记样本导致错误累积,针对这些问题提出结合相似度选择高置信度样本的朴素贝叶斯自训练方法。【方法】选择朴素贝叶斯作为基分类器,在迭代中通过相似度计算方法计算样本相似度,选择同时满足相似度阈值和类别号判别一致的无标记样本加入训练集。【结果】在UCI数据集的对比实验中发现,提出的新方法的分类正确率高于其他对比算法。【结论】新方法能够利用少量有标记样本和不断添加的置信度高的无标记样本去训练分类器,提高分类精度,解决了自训练方法因有标记样本集初始分布不均导致准确率较低的问题。
  相似文献   

6.
【目的】自训练方法易选出低置信度的无标记样本去训练分类器,在训练中也易误标记无标记样本导致错误累积,针对这些问题提出结合相似度选择高置信度样本的朴素贝叶斯自训练方法。【方法】选择朴素贝叶斯作为基分类器,在迭代中通过相似度计算方法计算样本相似度,选择同时满足相似度阈值和类别号判别一致的无标记样本加入训练集。【结果】在UCI数据集的对比实验中发现,提出的新方法的分类正确率高于其他对比算法。【结论】新方法能够利用少量有标记样本和不断添加的置信度高的无标记样本去训练分类器,提高分类精度,解决了自训练方法因有标记样本集初始分布不均导致准确率较低的问题。  相似文献   

7.
【目的】针对基于密度峰值聚类的自训练算法中错误标记样本会造成分类正确率降低,以及当已标记样本分散时密度峰值聚类算法结果易受到截断距离影响的问题,提出了结合合成实例与adaboostENN的密度峰值自训练算法。【方法】首先,用合成实例方法增加已标记样本的数量并提升空间分布的可靠性;其次,通过密度峰值聚类算法揭示数据空间结构,从而选择有代表性的无标记样本进行标记预测;最后,用集成噪声滤波器来更准确地检测出被错误标记的样本并将它删除。【结果】通过12个UCI数据集上的实验验证了所提出算法的有效性。【结论】提出的算法不仅能有效地解决无标记样本被错误标记的问题,而且使得密度峰值聚类算法不易受到截断距离的影响。  相似文献   

8.
利用K均值聚类和增量学习算法扩大训练样本规模,提出一种改进的mRMR SBC.一方面,利用K均值聚类预测测试样本的类标签,将已标记的测试样本添加到训练集中,并在属性选择过程中引入一个调节因子以降低K均值聚类误标记带来的风险.另一方面,从测试样本集中选择有助于提高当前分类器精度的实例,把它加入到训练集中,来增量地修正贝叶斯分类器的参数.实验结果表明,与mRMR SBC相比,所提方法具有较好的分类效果,适于解决高维且含有较少类标签的数据集分类问题.  相似文献   

9.
半监督学习是机器学习近年来的热点研究方向,而协同训练(Co-training)则是半监督学习中的重要范式,它利用双视图训练两个分类器来互相标记样本以扩大训练集,以此借助未标记样本提升学习性能.在实际应用中,视图通常会受到属性退化和噪声的影响而变得不充分(即视图不能提供足够的信息来正确预测样本的标记).在不充分视图下,两个视图上的最优分类器变得不再兼容,一个视图中的分类器标记的样本可能不利于另一个视图学得最优分类器.针对这一问题,提出一种改进的协同训练算法Compatible Co-training,它记录学习过程中每个未标记样本被赋予的标记,通过比较更新后的分类器对样本预测的标记与其初始标记,动态地删除标记不一致的样本,从而除去不利于学得最优分类器的样本.实验结果显示出Compatible Co-training比协同训练具有更好的泛化能力和更快的收敛速度.  相似文献   

10.
【目的】机器学习中不同算法适用于具有不同分布特征的数据集。在用整个训练集上训练得到的单个分类器预测新样本类别时,由于缺少对局部区域样本的针对性,可能导致分类器对某一区域数据的预测能力较差而产生错误分类。为了解决这个问题,提出基于k-means+ +的多分类器选择算法。【方法】首先用3种分类综合性能较好的算法———Ada-Boost、SVM、随机森林(RF)在训练集上分别训练得到3个分类器作为候选基分类器,然后利用k-means++算法将训练数据集分为k个簇,用3个候选分类器分别对每个簇进行分类测试,选择对这一簇中数据分类精度最高的分类器作为与它的数据相似数据的分类器。在对新样本进行类别预测时,首先判定样本属于哪个簇,然后用它的分类器进行分类预测。【结果】实验结果表明,新算法在9个UCI数据集上优于单个分类算法。【结论】基于局部区域动态选择最优分类器可以提高模型分类准确性。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号