首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
红树林是生长在热带和亚热带海岸线上的典型潮间带植物,气候变化、自然灾害和人为干扰的影响下退化严重,加强红树林监测是有效保护红树林的重要工作。本文选取广东雷州市东海岸红树林示范区为研究区域,通过样地无人机激光雷达(LiDAR)高密度点云数据以及样方实测数据搭建红树林结构参数反演模型,提取不同红树林种类样方的单木结构参数并检验红树林点云分割精度,依据精度检验指标与偏差度量指标验证单木反演参数精度并分析原因。结果表明(1)基于分水岭算法对不同种类红树林实地样方进行单木树高提取,其中无瓣海桑的整体分割效果最好。单木树高参数精度分析与拟合验证,无瓣海桑结果最优,其次为秋茄,白骨壤精度最低。(2)通过估测单木冠幅反演值与样地实测值的偏差以及偏离比例,发现红树林单木冠幅参数整体反演效果较差,识别精度最高的还是无瓣海桑。(3)单木树高的识别效果整体优于单木冠幅,整体分割结果为无瓣海桑最高,其次为秋茄,白骨壤最低。使用无人机激光雷达技术可以有效提取红树林结构参数,替代传统的红树林人工测量方法,为红树林资源动态变化监测及保护提供高精度基础数据。  相似文献   

2.
【目的】以长沙县明月村油茶林基地为研究区,探讨利用无人机倾斜摄影提取树冠体积进行油茶树高和产量估测的可行性。【方法】基于无人机正射影像和密集匹配点云,提取波段反射率、植被指数、纹理因子、高度特征等遥感变量和冠幅等冠层参数,同时利用克里金法、反距离权重法、自然邻近点法和过滤三角网法分别获取油茶树冠体积,建立多元线性回归、随机森林、K最邻近模型估测油茶树高和产量,并以地面三维激光点云获取的树冠体积、样地实测树高和产量作为实测值分别对估测结果进行精度评价。【结果】过滤三角网是获取油茶树冠体积最有效的方法,其平均相对误差(31.54%)优于反距离权重法(36.73%)、克里金法(37.04%)和自然邻近点法(38.54%)。将树冠体积作为特征变量参与建模后,树高和产量的多元线性回归、随机森林、K最邻近模型的精度均有所提升(树高相对均方根误差分别减小了3.77%、0.78%、0.64%,产量相对均方根误差分别减小了1.32%、0.34%、0.16%)。对比3种估测模型,随机森林模型的决定系数均优于多元线性回归和K最邻近(树高决定系数分别为0.78、0.51和0.19,产量决定系数分别为0.61、0.48和0.24)。研究发现,分别使用估测树高和实测树高参与产量建模的精度无明显差异。【结论】结合树冠体积和树高参与建模可有效提高油茶产量估测精度,研究结果可为区域范围内利用无人机遥感技术开展油茶树高和产量调查提供参考。  相似文献   

3.
以福州大学旗山校区为研究区,采集不同地面分辨率/航向/旁向重叠率无人机影像(5 cm/90%/80%、10 cm/90%/80%、5 cm/65%/60%),并实测树高及冠幅. 无人机影像经处理生成正射影像和三维点云;然后评价数字高程模型(DEM)的精度,并采用基于点云的局部最大值法提取树高;最后比较不同影像重叠率及地面分辨率下的树高估测精度. 实验结果表明: 较小的地面分辨率及较大的重叠率下的采集参数不仅生成的点云密度较高,重建更为完整,单木检测的F测度及树高估测精度更高,尤其是对于高度和冠幅较小的梧桐,而当林下无灌木丛时有助于减小DEM误差.  相似文献   

4.
基于GF-2的乔木生物量估测模型研究   总被引:1,自引:0,他引:1  
以福建省将乐林场为研究区,使用野外实测样地数据,结合福建省二类调查数据,获取了共192个样地的生物量数据,其中杉木纯林112个,马尾松纯林80个.对覆盖研究区的2景GF-2影像进行预处理,提取光谱信息、植被指数、纹理特征及地形因子,筛选与样地生物量相关性较高的因子作为建模的自变量,采用支持向量机、随机森林及多元逐步回归3种方法分别建立了杉木和马尾松生物量模型.结果表明:支持向量机、随机森林模型拟合效果均比多元逐步回归模型好,其中随机森林模型决定系数R2最高,2种样地的R2分别为0.65和0.72,估计精度也最高,分别为65.28%和76.82%;杉木样地3种模型的均方根误差分别为64.27、48.16和77.03,马尾松样地3种模型的均方根误差分别为54.79、48.18和65.63,其中随机森林模型的最低.在3种模型中,随机森林模型为乔木生物量的最优模型.   相似文献   

5.
植被冠层高度是一个重要的生态度量指标;无人机遥感技术为森林和城市景观中的树高快速估测提供了更经济、高效的途径,但目前基于无人机影像的采集条件对精确获取森林结构参数的影响还存在许多不确定的因素。本文以福州大学旗山校区为研究区,采集不同地面分辨率/航向/旁向重叠率无人机影像(5cm/90%/80%、10cm/90%/80%、5cm/65%/60%),并实测了树高及冠幅。在软件中对无人机影像进行处理,生成研究区正射影像和三维点云;然后评价生成的地面数字高程模型的精度以及基于点云的局部最大值法提取树高;最后比较不同影像重叠率及地面分辨率下的树高估测精度。实验结果表明:较小的地面分辨率及较大的重叠率下的采集参数不仅生成的点云密度较高,重建更为完整,单木检测的F测度及树高估测精度更高,尤其是对于高度和冠幅较小的梧桐,而且当林下无灌木丛时有助于减小DEM误差。  相似文献   

6.
【目的】利用增强Frost局部滤波和单木距离图重构标记技术对冠层高度模型(CHM)进行分割,以提高无人机激光雷达在单木树冠分割的精度和效率。【方法】选取江西分宜山下实验林场阔叶混交林、针叶混交林和针阔混交林3个不同类型的林分为研究对象,以无人机激光雷达数据为数据源,构建CHM。针对高分辨率CHM树冠区域孔隙较多的问题,利用增强Frost局部滤波处理优化CHM,优化结果与不同滤波方法进行了比较分析;然后应用距离图重构标记分割技术对增强Frost局部滤波优化后的0.1、0.2、0.5及1.0 m分辨率的CHM进行分割与分析;最后确定最佳分辨率的CHM,并其将分割结果与同等分辨率下分水岭算法以及点云分割均值偏移算法结果进行比较。【结果】采用增强Frost局部滤波处理的CHM优化效果显著,在有效抑制树冠噪音的同时,也能较好地保留图像细节信息。0.2 m分辨率的CHM分割效果最佳。距离图重构标记分割方法分割针叶混交林、针阔混交林、阔叶混交林3种不同林分类型的分割精度(OA)分别为0.96、0.84、0.75;根据树冠分割结果计算单木冠幅,冠幅估测的决定系数R2分别为0.83...  相似文献   

7.
联合LiDAR和多光谱数据森林地上生物量反演研究   总被引:1,自引:0,他引:1  
【目的】森林地上生物量的准确估测对于实时掌握全球碳储量变化及应对气候变化有着重要的意义。组合多种遥感数据特征优选,分类建模反演森林地上生物量,是提高森林地上生物量精度的有效方法。【方法】以根河市大兴安岭生态观测站寒温带天然林为研究对象,以机载激光雷达(LiDAR)、Landsat8 OLI两种遥感数据源结合55块地面调查数据,采用偏最小二乘算法优化筛选变量,再以线性多元逐步回归和快速迭代特征选择的最近邻算法(KNN-FIFS)构建模型,在两种数据源的不同组合方式下进行森林地上生物量反演。【结果】①基于线性多元逐步回归模型下的单一LiDAR数据反演精度决定系数(R2)为 0.76,均方根误差(RMSE)为 21.78 t/hm2;单一Landsat8 OLI数据的反演精度R2为 0.24,RMSE为39.27 t/hm2;LiDAR和Landsat8 OLI联合反演精度R2 为 0.84,RMSE为18.16 t/hm2;②基于KNN-FIFS模型下的单一LiDAR数据反演精度R2为 0.74,RMSE为23.83 t/hm2;单一Landsat8 OLI数据的反演精度R2为0.60,RMSE为 29.63 t/hm2;LiDAR和Landsat8 OLI联合反演精度R2为0.80,RMSE为21.15 t/hm2。【结论】①特征优选支持下的3种组合方式中,LiDAR和Landsat8 OLI两种数据的组合在两种模型中反演精度均最高,其中线性多元逐步回归模型的反演精度最高,说明LiDAR和Landsat8 OLI数据组合,激光雷达与光学数据优势特征互补,协同反演可有效提高森林地上生物量的反演精度;②单一数据源反演森林地上生物量精度中,LiDAR数据比Landsat8 OLI数据在两种模型反演精度中均较高,这与LiDAR数据空间分辨高、可获得垂直结构特征参数有关。  相似文献   

8.
针对传统的三维绿量估算方法存在耗时费力的缺点,提出利用可见光无人机影像快速估算绿化树木三维量的方法.首先获取高于10cm分辨率的无人机可见光遥感影像;其次结合可见光波段的光谱特征与无人机数据点云的高程特征获得研究区的冠层高度模型;再次通过局部最大值算法与标记控制分水岭算法提取单木树高、株数以及冠径参数,通过野外实测数据构建“树高-冠高”关系模型得到冠高;最后结合树种分布情况,按照不同的树冠形状构建三维绿量估算模型.  相似文献   

9.
激光雷达在获取树高和冠幅等森林资源信息方面具有无可比拟的优越性,构建基于树高和冠幅的二元立木材积模型,可为激光雷达技术在森林蓄积量估测应用中提供计量依据。通过测定广西桉树(Eucalyptus)典型分布区448株样木的树高、冠幅、胸径等因子,采用非线性回归估计方法建立树高冠幅二元材积模型、树高一元材积模型、胸径树高二元材积模型、胸径一元材积模型和冠幅一元材积模型,并对模型进行检验评价。建立的5个模型确定系数分别为0.969,0.875,0.994,0.945和0.588,总体误差分别为0.29%、-1.94%、-0.26%、1.88%和-2.82%,模型预估精度分别为97.75%、95.38%、99.14%、96.95%和91.72%;树高冠幅二元材积模型的模型总体检验、分树种检验、分段检验、分区检验和五折交叉检验,均符合林业数表编制的相关要求。树高冠幅二元材积模型各项指标显著优于树高一元材积模型和冠幅一元材积模型,与胸径树高二元材积模型接近,完全符合林业数表编制要求,可应用于基于机载激光雷达的森林资源调查和监测。  相似文献   

10.
【目的】应用不同数据源分析不同林冠层中探测提取树高的异同,探索适用于中国北方天然次生林树高估测的方法。【方法】以东北林业大学帽儿山实验林场中林施业区0.25 hm2样地为研究区域,基于无人机激光雷达(unmanned aerial vehicle laser scanning, ULS)、地基激光雷达(terrestrial laser scanning,TLS)和Vertex IV超声测高仪实测单木树高,根据冠层高度分布(canopy height distribution, CHD)对林冠层进行分层,对不同林冠层(上层和下层)、不同树木类型(针叶树和阔叶树)探测提取的树高进行对比与分析。【结果】由CHD计算得到的冠层分层阈值为8.5 m。树高的离群值大多产生在林冠上层,阔叶树比针叶树更容易产生离群值,ULS比TLS更容易产生离群值。在林冠上层,ULS比TLS估测树高的相对均方根误差(rRMSE)低2.56%,ULS提取针叶树树高的rRMSE比阔叶树低2.68%;在林冠下层,ULS仅能探测到少量树木,ULS比TLS探测提取树高的 rRMSE高6.31%,TLS提取针叶树树高的rRMSE比阔叶树低1.16%。【结论】针叶树的树高估测精度普遍高于阔叶树;当TLS和ULS均能对单木进行完全扫描时,具有准确提取树高的潜力;树高离群值多由冠型不规则或相互交叉的阔叶树产生,而大部分针叶树,由于具有规则的冠型,所以产生的离群值较少;基于CHD对林冠层进行划分能够较好地反映不同数据源估测树高的适用范围,具有一定的推广意义。  相似文献   

11.
【目的】通过研究随机森林(random forest, RF)特征筛选对单木树种分类精度的影响,以及多源遥感数据协同下单木树种分类的有效性,分析不同特征对单木树种分类的影响程度。【方法】以东北林业大学帽儿山实验林场中林施业区的两块100 m×100 m样地为研究对象,首先,以机载激光雷达(LiDAR,light detection and ranging)和多光谱遥感CCD(charge coupled device)影像为数据源,分别基于机载LiDAR数据提取高度、强度和树冠大小等共37个特征,基于CCD影像提取光谱和纹理共21个特征;其次,以随机森林方法进行特征筛选,之后以随机森林和支持向量机(support vector machine, SVM)两种非参数分类器,结合不同数据源和特征,采用12种分类方案,利用总体精度(overall accuracy, OA)、用户精度(user’s accuracy, UA)和生产者精度(producer’s accuracy, PA)对分类结果进行对比与精度评价。【结果】经随机森林特征筛选后,分类结果优于未进行特征筛选的结果,总体精度可以平均提高3.47%,使用机载LiDAR和CCD影像协同分类相较于仅使用CCD影像总体精度平均提高6.07%。【结论】随机森林特征筛选可以优化特征,减少特征冗余,提高分类精度;多源数据结合也可以提高分类精度;在多源数据结合时,光谱特征最重要,LiDAR提取的强度特征相较于高度特征更稳定。  相似文献   

12.
三维绿量能够从立体空间上描述城市绿地的空间分布和定量评价城市绿化的环境效益。本文以福州大学为研究区,探讨了利用可见光无人机影像估算绿化树木三维绿量的方法,并对校园生态效益进行定量分析。首先获取高于10cm分辨率的无人机可见光遥感影像;其次结合可见光波段的光谱特征与无人机数据点云的高程特征获得研究区的冠层高度模型;然后通过局部最大值算法与标记控制分水岭算法提取单木树高、株数以及冠径参数,通过野外实测数据构建“树高-冠高”关系模型得到冠高;最后结合树种分布情况,按照不同的树冠形状构建三维绿量估算模型,并基于三维绿量估算校园不同树种的生态效益。结果表明:研究区内三维绿量总量达到了804405m3,其中休闲区的三维绿量总量为428566m3,占总绿量的53.3%,而科技园区的三维绿量总量为26568m3,仅占总绿量的3.3%;而常见树种中,三维绿量贡献最大的为榕树,达到404405m3,占三维绿量总量的50.3%,而丹桂贡献的三维绿量仅为509m3,占总绿量的0.063%。研究认为:基于无人机遥感数据,能够较好的估算出研究区内绿化树木的三维绿量。  相似文献   

13.
基于GLMM的人工林红松二级枝条分布数量模拟   总被引:3,自引:0,他引:3  
【目的】利用广义线性混合模型模拟人工林红松二级枝条分布数量,建立二级枝条分布数量广义线性混合模型,并选出最优模型。【方法】基于黑龙江省孟家岗林场人工林65棵红松955个一级枝上的二级枝条数量,通过传统Poisson回归方法选出模拟精度最高的基础模型,考虑树木效应与树木内枝条观测间的相关性,构建二级枝条分布数量广义线性混合模型,并利用R2、标准误差、平均绝对误差、相对平均绝对误差和Vuong检验对收敛模型进行比较。【结果】考虑树木效应的混合模型模拟精度均高于传统回归模型,最终将含有截距、lnRDINC(RDINC为着枝深度)、R2DINCCL(冠长)4个随机效应参数以及自相关矩阵AR(1)的广义线性混合模型选为二级枝条分布数量最优预测模型。在模型固定效应参数估计结果中,lnRDINCCLDBH(胸径)前的系数为正值,R2DINCHDR(高径比)前的系数为负值,树冠内二级枝条分布数量存在最大值。最优模型的R2为0.896 1,标准误差为5.15,平均绝对误差为3.83,相对平均绝对误差为23.25%。【结论】广义线性混合模型不仅提高了模型的拟合精度,在反映总体二级枝条分布数量变化趋势的同时,还可以反映每棵树木之间的差异。  相似文献   

14.
【目的】探讨竞争指标和建模方法对天然闽楠(Phoebe bournei)单木冠幅预测模型的影响,以期为精准预测天然闽楠单木的冠幅提供参考。【方法】以江西省赣中25块闽楠天然次生林典型样地中的1 011株闽楠为研究对象,采用普通最小二乘法(OLS模型)、仅考虑样地水平的混合效应模型、增强回归树和随机森林4种建模方法建立单木冠幅模型,分别添加林分每公顷断面积、大于对象木的断面积之和、林分密度指数和简单竞争指数4种竞争指标,分析竞争指标对冠幅模型的影响,采用决定系数(R2)、均方根误差(RMSE)、平均相对误差绝对值(RMA)和平均绝对误差(MAE)确定最佳模型。【结果】不添加竞争指标时,模型的预测能力表现为:混合效应模型>OLS模型>增强回归树>随机森林;添加竞争指标时,最优模型表现为:混合效应模型>OLS模型>随机森林>增强回归树。OLS模型中添加大于对象木的断面积之和竞争指标时预测能力最佳;增强回归树中添加固定半径为7 m的简单竞争指数时预测能力最佳;随机森林中添加林分每公顷断面积竞争指标时预测能力最佳;混合效应模型不添加竞争指标时预测能力最佳(RMSE为0.846 0,RMA为0.211 1,MAE为0.650 1),并且都优于其他模型。【结论】研究结果可对天然闽楠单木冠幅生长进行精准预测,并为提高闽楠天然次生林的林分质量提供理论依据。  相似文献   

15.
【目的】立木枝下高模型的构建是森林经营的核心内容,利用非线性混合效应模型方法构建华北落叶松枝下高模型,可为森林生长与收获研究提供理论依据。【方法】基于112块华北落叶松天然次生林样地单木数据,从7个备选的枝下高-树高模型中选出一个最优基础模型; 分析9个不同单木或林分因子及其因子之间的组合对枝下高的影响,将影响显著的因子作为模型预测变量以提高模型精度。在此基础上,考虑区组以及嵌套在区组里的样地对枝下高的影响,即构建嵌套两水平的非线性混合效应枝下高模型。【结果】Logistic模型预测精度较高并且模型参数可解释,因此选为基础模型。除树高之外,立木胸径、样地内所有大于对象木胸径的立木断面积总和、平均冠幅和林分密度与枝下高相关显著,故作为模型预测变量。与传统模型相比,所构建的两水平嵌套非线性混合效应模型对应的决定系数提高了53.26%,均方根误差降低了24.73%,因此明显提高了模型预测精度。【结论】区组和嵌套在区组里的样地对立木枝下高随机干扰较大,当考虑这些随机效应对枝下高的影响时能明显提高模型的预测精度。  相似文献   

16.
【目的】为了寻找受区域影响较小、精度较高且鲁棒性较好的郁闭度遥感估算模型,采用4-Scale几何光学模型估算人工林树冠孔隙率及郁闭度。【方法】选择内蒙古旺业甸林场和广西高峰林场为实验区,首先对4-Scale模型进行参数敏感性分析,模拟林分在不同敏感性参数下的树冠孔隙率Pvg_c(树冠为刚体时的冠间孔隙率)和Pvg(考虑树冠内部孔隙的孔隙率),建立Pvg_c、Pvg与敏感性参数的一一对应关系数据库。其次,根据数据库建立Pvg_c和Pvg与敏感性参数的统计关系模型。然后根据获得的敏感性参数估算Pvg_c和Pvg,进而估算林分郁闭度。最后,分别采用样线法与鱼眼相机测定法测量的郁闭度检验基于Pvg_c和Pvg估算的林分郁闭度。【结果】基于Pvg_c和Pvg估算的人工林郁闭度精度分别为88.17%和92.8%。Pvg_c  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号