首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
湍流作用下水力空化气泡内温度演变的动力学分析   总被引:4,自引:0,他引:4  
蔡军  淮秀兰  闫润生  李勋锋 《科学通报》2011,56(12):947-955
以水为工作介质, 在综合考虑液体可压缩性、液体表面张力、液体黏性、气泡内外热交换及气泡内部存在水蒸气的情况下, 采用动力学方法对湍流压力场驱动下水力空化气泡内的温度演变及影响因素进行了研究. 分析了液体中空化热效应产生的原因及空化泡平衡半径、孔板水力空化反应器运行与结构参数等对空化泡溃灭温度的影响规律, 拟合得到了各影响参数与空化泡溃灭温度之间的显著函数关系式. 研究结果可为水力空化反应器的优化设计及水力空化技术的发展和应用提供理论指导与技术支撑.  相似文献   

2.
超声、磁共振多功能微气泡造影剂的制备和应用   总被引:2,自引:0,他引:2  
杨芳  李熠鑫  陈忠平  顾宁 《科学通报》2009,54(9):1181-1186
随着包膜微气泡材料和制备技术的发展, 微气泡超声造影剂不仅用于超声成像诊断, 而且在分子成像、药物传输及靶向治疗等多个领域得到广泛的研究与应用. 实验制备了膜壳装载Fe3O4纳米颗粒、中心包裹氮气的聚合物微气泡造影剂, 体外超声成像(US)显影实验发现该微气泡具有良好的超声图像增强作用. 利用包膜微气泡在超声场作用下的振动模型研究其动力学行为发现, 膜壳中包裹的Fe3O4纳米颗粒在一定浓度范围内能增加微气泡的膜壳散射截面, 增强超声波的背向散射强度, 从而显著增强超声图像的显影效果; 当超过一定Fe3O4纳米颗粒浓度则会导致微气泡膜壳散射截面减小, 从而降低超声图像增强效果. 另一方面体外磁共振成像(MRI)显影实验证明, 随着膜壳中Fe3O4纳米颗粒含量的增加, MRI增强效果亦增加. 因此为了制备US和MRI双重显影增强的微气泡造影剂, 控制磁性纳米颗粒在微气泡膜壳中的包裹量十分重要.  相似文献   

3.
湍流作用下可压缩液体中空化泡的动力学特性   总被引:8,自引:0,他引:8  
蔡军  淮秀兰  李勋锋 《科学通报》2010,55(10):857-866
以水为工作介质, 在综合考虑了液体黏性、表面张力、液体压缩性以及湍流作用等因素的情况下, 对孔板水力空化反应器中空化泡动力学行为特性进行了详细数值研究. 详细分析了湍流作用、空化泡初始半径、孔板下游恢复压力、管道直径以及孔板直径与管道直径之比对空化泡运动特性及其所形成的压力脉冲的影响规律, 发现了一些新现象, 如空化泡半径二次生长现象. 研究结果可为水力空化反应器的优化设计以及水力空化技术的实际应用提供一定的理论指导与技术支撑.  相似文献   

4.
高晓宇 《科学通报》1983,28(1):15-15
关于高能荷电粒子水声效应的研究,现阶段主要是从理论和实验两方面研究发声机制。目前讨论的发声机制主要有:热声、微气泡形成或分子离解。加速器质子束的水声实验,未观察到微气泡形成或分子离解所预期的贡献,结果表明,对声压的贡献来自热声,即荷电粒子  相似文献   

5.
奚菊群  郭荣 《科学通报》2007,52(17):1997-2002
通过紫外可见光谱、红外光谱、Zeta电势和量子力学从头算等方法研究了生理条件下(pH 7.4) 葛根素与卵磷脂囊泡的相互作用. 结果表明, 在卵磷脂囊泡体系中, 葛根素能与囊泡发生显著的相互作 用, 葛根素主要以分子中的B环部分定位于囊泡的疏水微区中, 并且卵磷脂体系有利于葛根素分子的酸碱平衡向去质子化的方向移动. 葛根素分子上的羟基与磷脂分子的极性头基在膜/水界面上形成的氢键结构增强了卵磷脂双层膜的规整性和稳定性, 从而导致磷脂膜的流动性和渗透性的降低.  相似文献   

6.
微纳马达的研究是一个多学科交叉的新兴领域.其中,Janus微马达利用自身两面异性导致的局部梯度场而产生自驱动现象,引起了学界的普遍关注.本文主要基于目前已开展的工作并借鉴国内外的一些最新成果,以期对Janus球形微马达的物理特征给出全面的描述.针对铂-二氧化硅(Pt-SiO_2)型Janus微球在过氧化氢溶液中发生的自驱动,通过实验和数值模拟分析了其两种自驱动形式(自扩散泳动和微气泡推进)的物理机制和运动特征.直径小于5mm的Janus微球发生自扩散泳动,通过无量纲均方位移随时间的变化揭示了微球平动经历由纯布朗运动、扩散泳动到类布朗运动的过程,给出了特征时间及不同阶段的主导物理因素.位移概率分布可以表征非高斯性,并分析布朗力矩主导的旋转特性并讨论壁面限制及剪切流的影响.直径20~50mm微球可观测到微气泡推进,微球位移揭示了随气泡尺寸增长,微球经过自扩散泳、气泡生长和气泡溃灭推进3个阶段组成的周期运动.Rayleigh-Plesset(R-P)方程则揭示了依次由黏性力、表面张力及气泡周围流体压力控制下的气泡生长标度率.本文还从应用角度介绍了交变电场下,利用介电泳操控Janus微球的微穿梭输运(microshuttle)技术,并讨论了自扩散泳与自电泳差别及微气泡推进型微马达效率提高等问题.  相似文献   

7.
封继康 《科学通报》1990,35(15):1198-1198
理论上非线性光学效应的产生是激光场与非线性介质的原子、分子相互作用的结果,用微扰结合密度矩阵理论可导出分子的二阶  相似文献   

8.
韩媛媛  姜伟 《科学通报》2012,(13):1081-1090
聚合物囊泡因其独特的结构和应用背景以及作为高分子物理和软物质物理的理想模型体系得到了人们的广泛关注.本文综述了嵌段共聚物通过自组装所形成囊泡的结构、性质及其应用,并重点介绍了囊泡形成的动力学过程及其物理机制,其目的是使人们更有效地通过物理手段调控聚合物囊泡的结构及其形成过程.  相似文献   

9.
分析了形成激光的诸要素,统一地理解了普通(以原子、分子或凝聚态物质为介质的)激光和自由电子激光的运作机制.由此认识了实现γ射线激光的困难和解决办法,即让带电粒子在普通激光中摆动,再配以适当的"共振"和"抽运"机制.为了进行精确可靠的分析我们建立了激光中的量子电动力学.她与真空中的量子电动力学等价,因此是当今最可靠的物理理论.由此明确得出的结论是,一束适当能量的单能直线前进的电子与一束单色平面波普通激光迎面相撞将产生γ射线激光,称为量子自由电子激光.当然,这是理想条件下的理论结论.然而协同学(synergetics)告诉我们,在实际条件逼近理想条件的过程中会有一临界点,越过这一点,诱致辐射的正反馈会导致一雪崩式的过程,电子束与普通激光碰撞产生的γ射线束遂相变为γ射线激光.  相似文献   

10.
当带电粒子通过物质时,径迹附近的物质受到电离和激发,同时伴随着声学波的发射,这称为带电粒子的声学效应。在1957年,根据流体动力学指出,在稳定的液体中,在带电粒子径迹附近,会有大量离子集团的相互运动,存在着电离和激发造成的局部的热应力,以及低能δ-电子被吸收时可能形成的微气泡,这是发射声学波的可能  相似文献   

11.
低渗透多孔介质和微管液体流动尺度效应   总被引:5,自引:0,他引:5  
宋付权 《自然杂志》2004,26(3):128-131
常规多孔介质和圆管中液体的流动都遵循Hagen-Poisseuille定理,即液体流速和压力梯度成正比.而对于低渗透多孔介质中液体渗流,存在拟启动压力梯度,即存在微尺度效应.那么对于微圆管,由于流动的通道具有较小的空间尺度,因此在物理本质上,也应该存在微尺度效应,但由于目前实验手段的局限,还未能证明这一点.本文通过对比和分析低渗透多孔介质和微管中液体流动规律,预测了微管中液体流动出现微尺度效应的尺度约为1微米.  相似文献   

12.
沈晨  许天亮  唐然  田文得  陈康 《科学通报》2023,(27):3691-3697
生命物质一般通过能量消耗过程自组装成功能结构,组装过程往往在受限环境中发生.理解受限状态下活性链结构和动力学对理解生命系统的行为具有重要意义.本文采用朗之万动力学模拟,研究了自驱动微丝在圆柱壳层内的结构和动力学,发现微丝呈现两态:熔态和超簇态.超簇态的形成依赖于微丝的面积分数、自驱动力大小和微丝刚度.适当的刚性和自驱动力是超簇形成的必要条件,体积排斥效应和自驱动力产生的有效吸引作用是超簇形成的物理机制.超簇形成后在壳层内可能呈现沿圆柱轴向的匀速平动和垂直于轴向的匀速转动.在固定微丝面积分数的条件下,半柔性微丝随着自驱动力的增加呈现熔态的重入现象;固定驱动力大小而改变刚性大小,同样会导致熔态的重入,表明链的刚性过大或过小都不利于超簇的形成.  相似文献   

13.
随着微成形加工尺度范围的不断延伸,单纯依靠模具施加载荷(力场)的微成形技术难以突破成形尺度极限,因此迫切需要发展塑性微成形新原理、新方法和新工艺。针对微成形尺度效应这一基本科学问题,将电场、电磁场和超声波等特种能场应用到微成形技术中,利用特种能场与材料相互作用产生的物理效应,突破微成形尺度极限并扩大可加工材料的范围,从而实现跨尺度、多材料和可控微成形。特种能场微成形技术将极大地促进微成形技术的发展和应用,成为微/纳制造技术领域一个重要研究方向。  相似文献   

14.
方励之 《科学通报》1966,11(3):101-101
Jahn和Teller曾经证明:对于具有轨道简并的电子态的非线形分子,会倾向于发生降低分子对称性的畸变,因而消除电子态的简并性。前不久,有一些工作讨论了Jahn-Teller效应的动力学方面的性质。所谓动力学Jahn-Teller效应,实质上就是分子(或晶体)中一个处于简并束缚态的电子与分子振动(或声子)的耦合的动力学。已有的工作,大都只讨论了弱耦合情况,卽当电子的静态畸变能量小于声子能量的情况。他们采用电子的静态畸变能量与声子能量之比作为微扰展开参量,求得了电子振动体系的能级。但是,有些实验事实表明,弱耦合模型是不符合某些实际情况的。例  相似文献   

15.
热液生态系统是如何形成的?深海热液活动在地球生命起源与演化中贡献是什么?作为深海热液生态系统初级生产者,化能自养微生物在热液区从无机到有机的物质能量转化、元素生物化学循环、热液生命起源演化、热液共生体与生态系统形成发挥着重要作用.深海热液生态系统的能量来源主要是地幔岩浆房水岩反应所产生的还原性物质,包括氢气、硫化氢、甲烷以及还原性金属离子等.化能自养微生物广泛分布于羽流、烟囱壁及热液沉积物等各种热液区生境,通过氧化热液中所携带的还原性物质获得能量、固定二氧化碳,形成热液生态系统初级生产力.通过长期的生物与非生物过程的交互作用,演化形成独特的深海暗能量生态系统.热液微生物的多样性分布特征与影响因素、热液区极端环境适应性机制与环境作用,以及热液生物共生机制等仍是目前重要研究内容,相关研究将有助于认识深海暗能量生态系统的形成机制以及深部生命过程.  相似文献   

16.
提出并设计了一种新型的低温两相中微子探测器, 它利用电子泡在液氦池中特殊的传输特性, 实时、高效地测量了来自太阳质子-质子反应产生的低能量中微子. 该电子泡探测器的工作原理类似于时间投影室, 当入射中微子进入到探测介质液氦池中后, 与氦原子发生作用, 会激发弹性散射电子, 通过测量这些散射电子的能量及轨迹并与放射性背景信号分开, 就可以反推出入射中微子的能量和其他性质. 由于散射电子的信号很弱, 因此使用位于液面上方饱和蒸汽区的气体电子倍增器放大电子信号. 这种技术的突出优点是具有极高的空间分辨率和很好地抑制电离信号反馈的功能. 基于气体电子倍增器读取电信号和高精度CCD相机以进行探测光信号的新型时间投影室的研究, 目的是建造一个三维的空间分辨率为几个毫米量级的大型液氦低温探测器, 以探测能量低至100~200 keV的太阳中微子.  相似文献   

17.
利用原子力显微镜(atomic force microscope, AFM)原位观察, 发现纳米气泡会影响牛血清白蛋白(bovine serum albumin, BSA)在疏水表面高序热解石墨(highly ordered pyrolytic graphite, HOPG)表面上的吸附. 在水/HOPG界面BSA分子可以均匀吸附并与纳米气泡共存. 注入乙醇除去纳米气泡后, 在原来纳米气泡的位置上BSA吸附层出现圆形空洞. 空洞的深度约8 nm, 直径在数十纳米. 纳米气泡与相应位置上空洞面积间的相关系数达0.88~0.94, 显示这些空洞确为纳米气泡所致. 另外, BSA分子环绕纳米气泡排列成环状, 说明在水/HOPG界面BSA倾向于吸附在接触线区域.  相似文献   

18.
胡素兴  徐至展 《科学通报》1997,42(7):689-693
强激光与物质的相互作用已成为物理研究中一个极为活跃的领域.在激光场强接近原子单位场强时,会出现许多非线性的物理现象.近几年来,分子与强激光场的相互作用研究也极为活跃,研究的主要目的在于探索激光强度在控制化学反应动力学方面的作用以及利用强激光场离解分子来研究分子激发态波包结构,与原子情形相似,强激光场中的分子行为也表现出一系列的非线性效应,如阈上离解、“库仑爆炸”和分子稳定化等.  相似文献   

19.
特种能场微成形技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
随着微成形加工尺度范围的不断延伸,单纯依靠模具施加载荷(力场)的微成形技术难以突破成形尺度极限,因此迫切需要发展塑性微成形新原理、新方法和新工艺。针对微成形尺度效应这一基本科学问题,将电场、电磁场和超声波等特种能场应用到微成形技术中,利用特种能场与材料相互作用产生的物理效应,突破微成形尺度极限并扩大可加工材料的范围,从而实现跨尺度、多材料和可控微成形。特种能场微成形技术将极大地促进微成形技术的发展和应用,成为微/纳制造技术领域一个重要研究方向。  相似文献   

20.
利用基于格子玻尔兹曼方法的离散颗粒模型对单孔射流鼓泡床进行了研究. 此算法基于四向耦合的离散颗粒模型, 流体的控制方程采用考虑了孔隙率和流固相的滑移速度对流体流动影响的修正格子玻尔兹曼方法来求解, 颗粒间相互作用通过时驱硬球模型求解, 流固耦合采用EMMS曳力模型. 首先研究了不同颗粒对形成气泡大小的影响, 结果表明, 在相同的射流气速下, 粒径越大形成的气泡越小. 在粒径相同的情况下, 提高气体的入射速度, 则形成的气泡越大. 同时考察了气泡的分离时间与粒径以及射流气速的关系, 结果表明, 随着粒径以及射流气速在一定范围内的改变, 气泡的分离时间并没有明显改变. 另外颗粒床层扩展影响气泡形状, 颗粒床层变宽后, 气泡的形状接近于圆形; 颗粒床层高度增加时, 气泡明显变小. 最后考察了气泡诱导现象, 模拟发现当区域有空腔时, 气泡会被诱导到空腔的方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号