首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse embryo implantation is a complex process that includes trophoblast cells derived from ectoplacental cone (EPC) adhesion to and migration through the extracellular matrix (ECM) of uterine endometrium and invasion into the decidua. At the time of implantation, fibronectin (FN) is abundant in the decidua and is distributed pericellularly around each individual stromal cell, and its receptor (integrin α-5β-1) expression on trophoblast populations is up-regulated. The focal adhesion kinase, a 125 ku protein tyrosine kinase (pp125 FAK), is tyrosine phosphorylated upon integrin engagement with its ECM ligand, and its tyrosine phosphorylation sites then serve as the binding sites which couple it with cellular proteins that contain Src SH2 or SH3 domains. Through these linkages, pp125 FAK may integrate multiple signals triggered by integrins. The model of EPC culture %in vitro% was used to study the expression, distribution and function of pp125 FAK during EPC outgrowth on FN. Results indicated that, pp125 FAK primarily expressed and distributed in cellular focal adhesions of the front edge of trophoblast outgrowth from EPC, and was localized in the peripheral region of the individual migrating trophblast cell; antibody or antisense oligodeoxynucleotide to pp125 FAK inhibited EPC attachment and outgrowth, as well as trophoblast cells spreading and migration. This experiment demonstrated that pp125 FAK as an integrin-mediated signaling molecule was involved in EPC outgrowth %in vitro%, and played an important role during trophoblast cells interaction with FN.  相似文献   

2.
W E Pullman  W F Bodmer 《Nature》1992,356(6369):529-532
Molecules of the cadherin and integrin families involved in cell-cell and cell-matrix adhesion have been implicated in epithelial differentiation, carcinogenesis and metastasis. Having observed that a colon cancer cell line bound avidly to collagen type I, inducing integrin-triggered glandular differentiation, we investigated the regulation of integrin function in these cells. We modified a mammalian expression cloning system that used monoclonal antibody selection to clone cell surface molecules. Using attachment to collagen type I to select for adhesive phenotype, we isolated a complementary DNA clone that increases cell adhesion to components of the extracellular matrix. The corresponding gene (cell adhesion regulator, CAR) is located on the long arm of chromosome 16 (16q) and encodes a protein of 142 amino acids, which has an N-terminal myristoylation motif and a consensus tyrosine-kinase phosphorylation site at the C terminus. Removal of this tyrosine residue abolishes enhancement of cell-matrix adhesion. This gene may encode an adhesion signal transduction molecule that functions in the suppression of tumour invasion.  相似文献   

3.
Phosphorylation of c-jun mediated by MAP kinases   总被引:142,自引:0,他引:142  
  相似文献   

4.
The ability of cells to form cell contacts, adhere to the extracellular matrix, change morphology, and migrate is essential for development, wound healing, metastasis, cell survival and the immune response. These events depend on the binding of integrin to the extracellular matrix, and assembly of focal adhesions, which are complexes comprising scaffolding and signalling proteins organized by adhesion to the extracellular matrix. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) regulates interactions between these proteins, including the interaction of vinculin with actin and talin. The binding of talin to beta-integrin is strengthened by PtdIns(4,5)P(2), suggesting that the basis of focal adhesion assembly is regulated by this lipid mediator. Here we show that the type I phosphatidylinositol phosphate kinase isoform-gamma 661 (PIPKI gamma 661), an enzyme that makes PtdIns(4,5)P(2), is targeted to focal adhesions by an association with talin. PIPKI gamma 661 is tyrosine phosphorylated by focal adhesion associated kinase signalling, increasing both the activity of phosphatidylinositol phosphate kinase and its association with talin. This defines a mechanism for spatial generation of PtdIns(4,5)P(2) at focal adhesions.  相似文献   

5.
心肌细胞肥大是许多心血管疾病常见的细胞形态学改变,其表型特征由其核内基因表达模式决定。Src和黏着斑激酶(focal adhesion kinase,FAK)作为胞质蛋白酪氨酸激酶是整合素信号的早期调控因子,是多细胞生物体所必须的。本文主要综述Src激酶家族及FAK在心肌肥大中信号转导的最新进展。  相似文献   

6.
The interaction of extracellular matrix-integrin markedly influences the adhesion,outgrowth,differentiation and expression of serine proteinases by the blastocyst,so it is regarded as a vital factor in blastocyst implantation.Although the mechanism of extracellular interactions between extracellular matrix and integrins has been well elucidated,the roles of the signaling molecules in the extracellular matrix-integrin signal transduction pathway in blastocyst implantation are unknown.This limits the understanding of blastocyst implantation and ECM-integrin signal transduction pathway.In the present study,in vitro blastocyst culture and indirect immunocytochemistry,matrix metalloproteinases(MMPs) zymography and antisense oligodeoxynucleotide(ODN) were used to investigate the expression of a fundamental molecule of integrin-dependent signal transduction pathways,focal adhesion kinase(FAK),in mouse blastocysts and its influence on mouse blastocyst adhesion,outgrowth and MMP-2.The results showed that mouse blastocysts expressed FAK.FAK protein was clustered in the peripheral migrating trophoblast cells and dispersed in the central area of blastocyst outgrowth.Fibronectin triggered pro-MMP-2 and 64kD MMP-2 activities.The antisense ODN to FAK attnuated pro-MMP-2 and 64kD MMP-2 activites which decreased abruptly and tended to disappear with increasting concentrations of the antisense ODN.Both mouse blastocyst adhesion and outgrowth on fibronectin were also influenced by the antisense ODN.Up to 20μg/mL of the antisense ODN concentration,the adhesion and out-growth rates were decreased in a dose-dependent manner.The results indicated that FAK influenced mouse blastocyst adhesion,outgrowth and MMP-2 activity by intracellular signal transduction.In other words,FAK regulates mouse implantation in terms of blastocyst adhesive and invasive abilities.  相似文献   

7.
Anti-pp60src antibodies are substrates for EGF-stimulated protein kinase   总被引:10,自引:0,他引:10  
J E Kudlow  J E Buss  G N Gill 《Nature》1981,290(5806):519-521
Epidermal growth factor (EGF) stimulates phosphorylation of its own receptor at a tyrosine residue. Similarly, the viral gene product pp60src, which is responsible for cellular transformation by avian sarcoma virus (ASV), phosphorylates itself and immunoglobulin directed against pp60src at tyrosine residues. This unusual site of phosphorylation catalysed by two membrane-associated protein kinases involved in growth control prompted us to study the immunological relatedness of the EGF-stimulated protein kinase and the pp60src. Using anti-pp60src antisera, we attempted to immunoprecipitate the EGF-stimulated protein kinase solubilized from plasma membranes. We report here that neither the EGF-stimulated kinase nor the EGF receptor were immunoprecipitable by anti-pp60src sera. However, anti-pp60src IgG served as a specific substrate for the EGF-stimulated kinase, suggesting a close similarity between the EGF-stimulated kinase and pp60src.  相似文献   

8.
M Chinkers  S Cohen 《Nature》1981,290(5806):516-519
Transformation by several RNA tumour viruses seems to be mediated by virally coded protein kinases which specifically phosphorylate tyrosine. A tyrosine-specific protein kinase also seems to be involved in the mitogenic action of epidermal growth factor (EGF). This EGF-stimulated kinase activity is closely associated with the EGF receptor, with which it copurifies during EGF-affinity chromatography. Because both the virus- and EGF-stimulated tyrosine kinases may be involved in stimulation of cell growth, and because the viral kinases may be antigenically related to normal cell proteins, we examined the interaction of antibodies to viral tyrosine kinases with the affinity-purified EGF receptor-kinase preparation. We report here that the receptor-kinase specifically phosphorylates antibodies directed against the transforming protein kinase pp60src of Rous sarcoma virus. However, none of these antibodies, including those which cross-react with the normal cellular homologue of pp60src (pp60sarc), precipitate the receptor-kinase. These results suggest that the EGF receptor-kinase is related to, but probably not identical with, pp60sarc.  相似文献   

9.
Holmberg J  Clarke DL  Frisén J 《Nature》2000,408(6809):203-206
Eph tyrosine kinase receptors and their membrane-bound ephrin ligands mediate cell interactions and participate in several developmental processes. Ligand binding to an Eph receptor results in tyrosine phosphorylation of the kinase domain, and repulsion of axonal growth cones and migrating cells. Here we report that a subpopulation of ephrin-A5 null mice display neural tube defects resembling anencephaly in man. This is caused by the failure of the neural folds to fuse in the dorsal midline, suggesting that ephrin-A5, in addition to its involvement in cell repulsion, can participate in cell adhesion. During neurulation, ephrin-A5 is co-expressed with its cognate receptor EphA7 in cells at the edges of the dorsal neural folds. Three different EphA7 splice variants, a full-length form and two truncated versions lacking kinase domains, are expressed in the neural folds. Co-expression of an endogenously expressed truncated form of EphA7 suppresses tyrosine phosphorylation of the full-length EphA7 receptor and shifts the cellular response from repulsion to adhesion in vitro. We conclude that alternative usage of different splice forms of a tyrosine kinase receptor can mediate cellular adhesion or repulsion during embryonic development.  相似文献   

10.
Since the discovery of insulin nearly 70 years ago, there has been no problem more fundamental to diabetes research than understanding how insulin works at the cellular level. Insulin binds to the alpha subunit of the insulin receptor which activates the tyrosine kinase in the beta subunit, but the molecular events linking the receptor kinase to insulin-sensitive enzymes and transport processes are unknown. Our discovery that insulin stimulates tyrosine phosphorylation of a protein of relative molecular mass between 165,000 and 185,000, collectively called pp185, showed that the insulin receptor kinase has specific cellular substrates. The pp185 is a minor cytoplasmic phosphoprotein found in most cells and tissues; its phosphorylation is decreased in cells expressing mutant receptors defective in signalling. We have now cloned IRS-1, which encodes a component of the pp185 band. IRS-1 contains over ten potential tyrosine phosphorylation sites, six of which are in Tyr-Met-X-Met motifs. During insulin stimulation, the IRS-1 protein undergoes tyrosine phosphorylation and binds phosphatidylinositol 3-kinase, suggesting that IRS-1 acts as a multisite 'docking' protein to bind signal-transducing molecules containing Src-homology 2 and Src-homology-3 domains. Thus IRS-1 may link the insulin receptor kinase and enzymes regulating cellular growth and metabolism.  相似文献   

11.
The protein products of several transforming retroviruses as well as the receptors for several hormones and growth factors, including insulin, have been shown to possess a protein kinase activity in vitro specific for tyrosine residues in protein substrates, including themselves. In the case of pp60src and the insulin receptor, autophosphorylation activates the tyrosine kinase activity towards exogenous substrates. Experiments indicate that, in vivo, many of these viruses or growth factors induce an increase in cellular phosphotyrosine, as well as an increase in the phosphorylation of serine residues on proteins, including ribosomal protein S6. It seems likely that some of the effects of insulin might be mediated by phosphorylation of intracellular substrates by its receptor. As the beta subunit of the receptor is a transmembrane protein, such phosphorylation could occur either while the receptor is still in the membrane or after its internalization. In various cell systems, internalized receptors are degraded, reshuttled back to the plasmalemma or maintained in a separate compartment before reinsertion in the membrane; shuttling of the insulin receptor could provide the opportunity for it to phosphorylate various intracellular components as part of its mechanism of signal transduction. To approach directly the question of whether the receptor can elicit a signal while acting at an intracellular location, we have microinjected Xenopus oocytes with the insulin receptor kinase. The results indicate that an S6 protein-serine kinase is stimulated or an S6 protein-serine phosphatase inhibited by the activity of the insulin receptor, supporting the concept that the insulin receptor acting within the cell can elicit a biological response.  相似文献   

12.
Ecto-protein kinase activity on the external surface of neural cells   总被引:14,自引:0,他引:14  
Y H Ehrlich  T B Davis  E Bock  E Kornecki  R H Lenox 《Nature》1986,320(6057):67-70
ATP is secreted in association with neurotransmitters at certain synapses and neuromuscular junctions. Extracellular ATP is known to exert potent effects on the activity of cells in the nervous system, where it can act as a neurotransmitter or as a modulator regulating the activity of other neurohormones. We have suggested that such modulation may involve the activity of extracellular protein phosphorylation systems. It is well known that intracellular protein kinases are important in the regulation of various neuronal functions, but protein kinases which use extracellular ATP to phosphorylate proteins localized at the external surface of the plasma membrane (ecto-protein kinases) have not been demonstrated in neuronal cells. Here we present direct evidence for the existence of an ecto-protein kinase and demonstrate endogenous substrates for its activity at the surface of intact neural cells. The phosphorylation of one of these surface proteins is selectively stimulated during cell depolarization. In addition, neuronal cell adhesion molecules (N-CAMs) appear to be among the substrates of ecto-protein kinase activity. These results suggest a role for surface protein phosphorylation in regulating specific functions of developing and mature neurones.  相似文献   

13.
M F White  R Maron  C R Kahn 《Nature》1985,318(6042):183-186
Phosphotyrosine-containing proteins are minor components of normal cells which appear to be associated primarily with the regulation of cellular metabolism and growth. The insulin receptor is a tyrosine-specific protein kinase, and one of the earliest detectable responses to insulin binding is activation of this kinase and autophosphorylation of its beta-subunit. Tyrosine autophosphorylation activates the phosphotransferase in the beta-subunit and increases its reactivity toward tyrosine phosphorylation of other substrates. When incubated in vitro with [gamma-32P]ATP and insulin, the purified insulin receptor phosphorylates various proteins on their tyrosine residues. However, so far no proteins other than the insulin receptor have been identified as undergoing tyrosine phosphorylation in response to insulin in an intact cell. Here, using anti-phosphotyrosine antibodies, we have identified a novel phosphotyrosine-containing protein of relative molecular mass (Mr) 185,000 (pp185) which appears during the initial response of hepatoma cells to insulin binding. In contrast to the insulin receptor, pp185 does not adhere to wheat-germ agglutininagarose or bind to anti-insulin receptor antibodies. Phosphorylation of pp185 is maximal within seconds after exposure of the cells to insulin and exhibits a dose-response curve similar to that of receptor autophosphorylation, suggesting that this protein represents the endogenous substrate for the insulin receptor kinase.  相似文献   

14.
K L Gould  P Nurse 《Nature》1989,342(6245):39-45
The cdc2+ protein kinase (pp34) is found to be phosphorylated on tyrosine as well as serine and threonine residues in exponentially growing Schizosaccharomyces pombe. At mitosis, the level of pp34 phosphorylation on both threonine and tyrosine residues decreases. The single detectable site of tyrosine phosphorylation in pp34 has been mapped to Tyr 15, a residue within the presumptive ATP-binding domain. Substitution of this tyrosine by phenylalanine advances cells prematurely into mitosis, establishing that tyrosine phosphorylation/dephosphorylation directly regulates pp34 function.  相似文献   

15.
Fibronectin, a major extracellular matrix, plays an important role in embryo implantation by mediating embryo adhesion and outgrowth. In this work, mouse blastocysts produced pro-matrix metalloproteinase-9, pro-matrix metalloproteinase-2 and 64 ku matrix metalloproteinase-2 when they were co-cultured with fibronectin. In contrast, mouse blastocysts did not produce these proteinases without fibronectin. Focal adhesion kinase is a fundamental molecule of integrin signaling pathway and its antisense oligodeoxynucleiotide inhibited blastocyst matrix metalloproteinases expression induced by fibronectin. The results indicated that fibronectin triggered matrix metalloproteinase-9 and -2 expression in mouse blastocyst through its integrin receptors and subsequent signaling pathway, which enhanced the synchronization of blastocyst invasiveness and uterine receptivity and ensured the accuracy of events relative to implantation in timing and spatiality.  相似文献   

16.
Y Ben-Neriah  A R Bauskin 《Nature》1988,333(6174):672-676
Tyrosine-specific phosphorylation of proteins is a key to the control of diverse pathways leading to cell growth and differentiation. The protein-tyrosine kinases described to date are either transmembrane proteins having an extracellular ligand binding domain or cytoplasmic proteins related to the v-src oncogene. Most of these proteins are expressed in a wide variety of cells and tissues; few are tissue-specific. Previous studies have suggested that lymphokines could mediate haematopoietic cell survival through their action on glucose transport, regulated in some cells through the protein-tyrosine kinase activity of the insulin receptor. We have investigated the possibility that insulin receptor-like genes are expressed specifically in haematopoietic cells. Using the insulin receptor-related avian sarcoma oncogene v-ros as a probe, we have isolated and characterized the complementary DNA of a novel gene, ltk (leukocyte tyrosine kinase). The ltk gene is expressed mainly in leukocytes, is related to several tyrosine kinase receptor genes of the insulin receptor family and has unique structural properties: it apparently encodes a transmembrane protein devoid of an extracellular domain. Two candidate ltk proteins have been identified with antibodies in the mouse thymus, and have properties indicating that they are integral membrane proteins. These features suggest that ltk could be a signal transduction subunit for one or several of the haematopoietic receptors.  相似文献   

17.
The T lymphocyte surface protein CD4 is an integral membrane glycoprotein noncovalently associated with the tyrosine protein kinase p56lck. In normal T cells, surface association of CD4 molecules with other CD4 molecules or other T-cell surface proteins, such as the T-cell antigen receptor, stimulates the activity of the p56lck tyrosine kinase, resulting in the phosphorylation of various cellular proteins at tyrosine residues. Thus, the signal transduction in T cells generated through the surface engagement of CD4 is similar to that observed for the class of growth factor receptors possessing endogenous tyrosine kinase activity. As CD4 is also the cellular receptor for the human immunodeficiency virus (HIV), binding of the virus or gp120 (the virus surface protein responsible for specific CD4+ T-cell association) could mimic the types of immunological interactions that have previously been found to stimulate p56lck and trigger T-cell activation pathways. We have evaluated this possibility and report here that binding of HIV-1 or the virus glycoprotein gp120 to CD4+ human T cells fails to elicit detectable p56lck-dependent tyrosine kinase activation and signalling, alterations in the composition of cellular phosphotyrosine-containing proteins, or changes in intracellular Ca2+ concentration.  相似文献   

18.
K Segawa  Y Ito 《Nature》1983,304(5928):742-744
Polyoma virus codes for three proteins involved in host cell transformation: the large, middle and small T antigens. Middle T antigen is a major transforming protein which is responsible for the induction of the phenotype of transformed cells and, without it, transformation does not occur (reviewed in refs 1-4). Middle T antigen alone can transform established cell lines, although large, and possibly small, T antigens are also required for the full expression of the phenotype of transformed cells in media with a low concentration of serum. A subfraction of middle T antigen is associated with a protein kinase activity which phosphorylates middle T antigen in vitro on tyrosine. There is a strong correlation between the level of this kinase activity and the degree of expression of the phenotype of transformed cells. We report here that epidermal growth factor (EGF) stimulates tyrosine phosphorylation of middle T antigen, suggesting the possibility that mitogenic growth factor(s) regulates this phosphorylation activity.  相似文献   

19.
M S Collett  A F Purchio  R L Erikson 《Nature》1980,285(5761):167-169
The protein responsible for malignant transformation by avian sarcoma viruses (ASVs) has been identified as a phosphoprotein of molecular weight 60,000 designated pp60src (refs 1--4). It has been suggested that this protein has a functional role in cellular transformation involving the phosphorylation of cellular proteins, for it was discovered that specific immunoprecipitates from ASV-transformed cells that contain pp60src catalysed the transfer of phosphate from [gamma-32P]ATP to the heavy chain of rabbit immunoglobulin. Additional studies involving the cell-free synthesis of the ASV src protein further demonstrated that the presence of the src polypeptide correlated with that presence of a phosphotransferase activity. Our studies, involving the biochemical purification of this protein, have demonstrated that the ASV-transforming gene product, pp60src, is itself a protein kinase. We have purified the pp60src protein approximately 5,000-fold using either conventional ion-exchange chromatography or immunoaffinity chromatography. The resultant partially purified preparations contain a cyclic AMP-independent protein kinase activity. We report here that the soluble phosphotransferase activity of partially purified pp60src results in the phosphorylation of exclusively tyrosine residues in a variety of proteins that serve as substrates.  相似文献   

20.
Phorbol ester and diacylglycerol induce protein phosphorylation at tyrosine   总被引:2,自引:0,他引:2  
T Gilmore  G S Martin 《Nature》1983,306(5942):487-490
The phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is an efficient tumour promoter in vivo. In vitro, TPA activates the phospholipid- and Ca2+-dependent protein kinase, kinase C. This activation is believed to reflect the structural similarity between TPA and diacylglycerol, the endogenous protein kinase C activator which is produced in vivo by hydrolysis of phosphatidylinositol (reviewed in ref. 3). Protein kinase C phosphorylates protein substrates at serine and threonine residues in vitro. The effects of TPA on cultured fibroblasts--including enhanced hexose uptake, disruption of actin stress fibres and growth stimulation--are very similar to those induced by certain retrovirus transforming proteins and by peptide growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and multiplication-stimulating activity (MSA). These transforming proteins and mitogenic agents seem to act by inducing tyrosine-specific protein phosphorylation. Such observations suggested that some of the effects of TPA in vivo may be mediated by protein phosphorylation at tyrosine residues. A 42,000-molecular weight (42 K) polypeptide was previously shown to be phosphorylated at tyrosine in cells transformed by avian sarcoma viruses and in cells stimulated by EGF, PDGF or MSA (J. Cooper, personal communication and refs 11 and 12; this polypeptide was originally designated 43 K or spot n in ref. 10). We show here that this polypeptide also becomes phosphorylated at tyrosine in cells treated with TPA. Furthermore, exogenously added diacylglycerol likewise stimulates the phosphorylation of this protein at tyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号