首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The spin-forbidden reaction 1HNO(1A') OH-→3NO-(3Σ-) H2O has been extensively explored using various CASSCF active spaces with MP2 corrections in several basis sets. Natural bond orbital (NBO) analysis, together with the NBO energetic (deletion) analysis, indicates that the two isomers have nearly equal total energy and could compete with each other in the title reaction. More significantly, the singlet/triplet surface crossing regions have been examined and the spinorbit coupling (SOC) and energetics have been computed. The computational results indicate that the SOC is very large at the crossing point T1/S0 trans (ca.40.9 cm-1). Moreover, the T1/S0 trans has a low energy of 10.67 kcal/mol relative to that of trans-S0. Therefore, the surface crossing to the triplet state seems much more efficient at the T1/S0 trans region along the minimum energy path (MEP), However, The values of single (P1ISC) and double (P2ISC) passes estimated at T1/S0 trans show that the ISC occurs with a little probability.  相似文献   

2.
The insertion reaction mechanisms of siglet and striglet CCI2 with CH3CHO have been studied by using the DFT, NBO, CCSD(T) and AIM method. The geometries of reactions, transition state and products were completely optimized by B3LYP/6-31G(d). All the energy of the species was obtained at the CCSD(T)/6-31G(d,p) level. The calculated results indicated that all the major pathways of the reaction were obtained on the singlet potential energy surface. The singlet CCl2 can not only insert the Cα--H (reaction I) but also can react with Cβ--H (reaction ll). There are three main existing pathways and the products are P1 (CH3COHCCl2), P2 (CH2COHCHCl2) and P4[CHCl2CHCHOH] respectively. Reaction II happens more easily according to the energy changes and the barrier in rate-controlling step. In addition, the important geometries in domain pathways have been studied by AIM theory. And also, the energy changes of H in the inserted C--H bond have been investigated.  相似文献   

3.
The two-state reaction mechanism of CpCo(C_4H_4)with isocyanate on the triplet and singlet potential energy surfaces has been investigated at the B3LYP level.A study is described for the computation of spin-orbit coupling of triplet state of the minimal energy crossing point(CP)with their singlet states and of the zerofield splitting(ZFS)parameters of the triplet states,including the full one-and two-electron terms of the BreitPauli Hamiltonian.There are two key crossing points along this two-state reaction pathway.The first crossing point—CP2 exists near~1B.The reacting system will change its spin multiplicity from the triplet state to the singlet state near this crossing region.Although the spin-orbit coupling interaction and ZFS D-tensor of the CP2 region are very strong,the reaction system will occur the reverse intersystem crossing from T_1 to S_0.Therefore,its spin-flip efficiency may be lower.The second crossing point,CP3will again change its spin multiplicity from the singlet state to the triplet state in the Co-Cr bond activation pathway,leading to a decrease in the barrier height of~1TS(CF)from19.5 to 9.5 kcal/mol(1cal=4.182 J),and the efficiency of intersystem crossing from S_0 to T_1 is high because the larger spin-orbit coupling(SOC)matrix elements will result in the overpopulations of the three sublevels of T_1(3.30×10~(-1),3.32×10~(-1),and 3.38×10~(-1),respectively).  相似文献   

4.
The adsorption and dissociation of NH3 on Ir{110}(1×2) have been investigated using the density- functional calculations at a coverage of 0.25 ML. The adsorption sites, energy, and geometries were obtained for NH3, NH2, and H adsorptions on the surface. The transition state for NH3 dissociation on Ir{110}(1×2) was also identified. It was found that NH3 is adsorbed preferentially at the ridge atop site, while NH2 and H are adsorbed at the ridge bridge site. The activation barrier of NH3 dissociation is 78.4 kJ/mol, which is very close to the NH3 adsorption energy of 90.0 kJ/mol. This indicates that the desorption and dissociation of NH3 on Ir{110}(1×2) are very competitive, which is consistent with the recent experimental results.  相似文献   

5.
The mechanism of the cycloaddition reaction of singlet dimethyl methylene carbene and acetone has been studied by using second-order Moller-Plesset perturbation and density functional theory. The geometrical parameters, harmonic vibrational frequencies and energy of stationary points on the potential energy surface are calculated by MP2/6-31G and B3LYP/6-31G methods. The results show that path b of the cycloaddition reaction (1) would be the major reactive channel of the cycloaddition reaction between singlet dimethyl methylene carbene and acetone, which proceeds in two steps: i) The two reactants form an energy-rich intermediate (INT1b), which is an exothermic reaction of 23.3 kJ/mol with no energy barrier. ii) The intermediate INT1b isomerizes to a three.membered ring product (P1) via transition state TS1b with energy barrier of 22.2 kJ/mol. The reaction rate of this reaction and its competitive reactions do greatly differ, with excellent selectivity. In view of dynamics and thermodynamics, this reaction is suitable for occurring at 1 atm and temperature range of 300-800 K, in which the reaction will have not only the larger spontaneous tendency and equilibrium constant but also the faster reaction rate.  相似文献   

6.
The insertion reaction mechanism of CBr2 with CH3CHO has been studied by using the B3LYPI6-31G(d) method. The geometries of reactions, transition state and products were completely optimized. All the energy of the species was obtained at the CCSD(T)/6-31G(d) level. All the transition state is verified by the vibrational analysis and the internal reaction coordinate (IRC) calculations. The results show that the propionaldehyde (Hp1) is the main product of CH2 insertion with CH3CHO. The calculated results indicated that all the major pathways of the reaction were obtained on the singlet potential energy surface. The singlet CBr2 not only can insert the Cα-H [reaction I(1)]) but also can react with Cβ-H [reaction l1(1)]. The statistical thermodynamics and Eyring transition state theory with Wigner correc-tion are used to study the thermodynamic and kinetic characters of I(1) and I1(1) in temperature range from 100 to 2200 K. The results show that the appropriate reaction temperature rang is 250 to 1750 K and 250 to 1600 K at 1.0 atm for I(1) and I1(1) respectively. The rate constant and equilibrium constant are distinct in the range from 250 to 1000 K so that I(1) more easily occurs, while the reactions are not selected in the temperature range of 1000-1600 K.  相似文献   

7.
The optimizations geometries and interaction energy corrected by BSSE of the complexes between C4H4Y (Y=O, S) and CHiLi have been calculated at the B3LYP/6-311++G^** and MP2/6-311++G^** levels. Three complexes were obtained. Abnormally, the calculations showed that all the C10--Li14 bond lengths increased obviously but the blue-shift of C10-Li14 stretching frequency occurred after formed complexes. The calculated binding energy with basis set super-position error (BSSE) and zero-point vibrational energy corrections of complexes I-III is -45.757, -35.700 and -39.107 kJ·mol^-1, respectively. The analyses on the combining interaction with the atom-in-molecules theory (AIM) also showed that a relatively strong lithium bond interaction presented in furan homologues C4H4Y-LiCH3 systems. Natural bond orbital theory (NBO) analysis has been performed, and the results revealed that the complex I is formed with n-σ type lithium bond interaction between C4H40 and LiCH3, complex II is formed with TT-s type lithium bond interaction between C4H4O and LiCH3, and complex III is formed with TT-s and n-s type lithium bond interactions between C4H4S and LiCH3, respectively.  相似文献   

8.
The optimized geometries of the complexes between HnY (n=2, 3; Y=O, S, N) and LiNH2 have been calculated at the B3LYP/6-311++G^** and MP2/6-311++G^** levels. Three stable complexes were obtained. Frequency analysis showed that the enlarged 2N-4Li presents the abnormal blue shift in three complexes. The calculated binding energy with basis set super-position error (BSSE) and zero-point vibrational energy (ZPE) corrections of complex Ⅰ-Ⅲ is -58.65, -31.66 and -69.59 kJ·mol^-1 (MP2), respectively. Natural bond orbital theory (NBO) analysis has been performed, and the results revealed that the H2O…LiNH2 (complex I) and H3N…LiNH2 (complex Ⅲ) are formed with coexisting σ-s and n-s type lithium bond interactions, complex Ⅱ is formed with ττ-s type lithium bond interaction between HnY (n=2,3; Y=O, N) and LiNH2, and H2S…LiNH2 (complex Ⅱ) is formed with n-s type lithium bond interaction between H2S and LiNH2. Natural resonance theory (NRT) and atom in molecule (AIM) theory have also been studied to investigate the bond order and topological properties of the lithium bond structures.  相似文献   

9.
The insertion reaction mechanism of CBr_2 with CH_3CH_O has been studied by using the B3LYP/6-31G(d) method. The geometries of reactions, transition state and products were completely optimized. All the energy of the species was obtained at the CCSD(T)/6-31G(d) level. All the transition state is verified by the vibrational analysis and the internal reaction coordinate (IRC) calculations. The results show that the propionaldehyde (~HP1) is the main product of CH_2 insertion with CH_3CH_O. The calculated results indicated that all the major pathways of the reaction were obtained on the singlet potential energy surface. The singlet CBr_2 not only can insert the C_α-H [reaction I(1)]) but also can react with C_β-H [reaction II(1)]. The statistical thermodynamics and Eyring transition state theory with Wigner correc- tion are used to study the thermodynamic and kinetic characters of I(1) and II(1) in temperature range from 100 to 2200 K. The results show that the appropriate reaction temperature rang is 250 to 1750 K and 250 to 1600 K at 1.0 atm for I(1) and II(1) respectively. The rate constant and equilibrium constant are distinct in the range from 250 to 1000 K so that I(1) more easily occurs, while the reactions are not selected in the temperature range of 1000-1600 K  相似文献   

10.
The adsorption and dissociation of NH3 on Ir{110}(1×2) have been investigated using the densityfunctional calculations at a coverage of 0.25 ML. The adsorption sites, energy, and geometries were obtained for NH3, NH2, and H adsorptions on the surface. The transition state for NH3 dissociation on Ir{110}(1×2) was also identified. It was found that NH3 is adsorbed preferentially at the ridge atop site, while NH2 and H are adsorbed at the ridge bridge site. The activation barrier of NH3 dissociation is 78.4 kJ/mol, which is very close to the NH3 adsorption energy of 90.0 kJ/mol. This indicates that the desorption and dissociation of NH3 on Ir{110}(1×2) are very competitive, which is consistent with the recent experimental results.  相似文献   

11.
The reaction mechanism between (Me)3CO· radical and trans-3-hexene in benzene was studied for the first time at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d)+ZPVE level. Two distinct elementary channels were identified as: (1) abstraction-addition; (2) addition-addition-elimination. Analysis of the potential energy surface demonstrates that for the title reaction, channels (1) and (2) have the major and minor contribution, respectively. Our calculated results can well explain the recently observed product distribution by Coseri et al. (J. Org. Chem. 2005, 70, 4629). However, we found that the addition-abstraction channel proposed by Coseri et al. is kinetically infeasible.  相似文献   

12.
The optimized geometries of the complexes between HnY (n=2, 3; Y=O, S, N) and LiNH2 have been calculated at the B3LYP/6-311 G** and MP2/6-311 G** levels. Three stable complexes were obtained. Frequency analysis showed that the enlarged 2N―4Li presents the abnormal blue shift in three complexes. The calculated binding energy with basis set super-position error (BSSE) and zero-point vibrational energy (ZPE) corrections of complex I―III is _58.65, _31.66 and _69.59 kJ·mol-1 (MP2), respectively. Natural bond orbital theory (NBO) analysis has been performed, and the results revealed that the H2O…LiNH2 (complex I) and H3N…LiNH2 (complex III) are formed with coexisting σ-s and n-s type lithium bond interactions, complexⅡis formed with π-s type lithium bond interaction between HnY (n=2,3; Y=O, N) and LiNH2, and H2S…LiNH2 (complex II) is formed with n-s type lithium bond interaction between H2S and LiNH2. Natural resonance theory (NRT) and atom in molecule (AIM) theory have also been studied to investigate the bond order and topological properties of the lithium bond structures.  相似文献   

13.
The optimizations geometries and interaction energy corrected by BSSE of the complexes between C4H4Y (Y=O, S) and CH3Li have been calculated at the B3LYP/6-311 G** and MP2/6-311 G** levels. Three complexes were obtained. Abnormally, the calculations showed that all the C10—Li14 bond lengths increased obviously but the blue-shift of C10—Li14 stretching frequency occurred after formed complexes. The calculated binding energy with basis set super-position error (BSSE) and zero-point vibrational energy corrections of complexes I―III is ?45.757, ?35.700 and ?39.107 kJ·mol?1, respectively. The analyses on the combining interaction with the atom-in-molecules theory (AIM) also showed that a relatively strong lithium bond interaction presented in furan homologues C4H4Y---LiCH3 systems. Natural bond orbital theory (NBO) analysis has been performed, and the results revealed that the com- plex I is formed with n-σ type lithium bond interaction between C4H4O and LiCH3, complex II is formed with π-s type lithium bond interaction between C4H4O and LiCH3, and complex III is formed with π-s and n-s type lithium bond interactions between C4H4S and LiCH3, respectively.  相似文献   

14.
Phosphonylation and aging processes between butyrylcholinesterase with mipafox have been studied at the B3LYP/6-311G(d,p) level of theory. The calculated results indicate that the phosphonylation process employs a two-step addition-elimination mechanism with the addition (the first step) as the rate-limiting step. Two different calculation models revealed that the catalytic triad of butyrylcholinesterase plays an important role in accelerating the reaction. This is the same mechanism as the phosphonylation reaction of acetylcholinesterase by sarin reported by Wang et al. However, the energy barrier of the rate-limiting step in the present reaction is higher than that in phosphonylation reaction of acetylcholinesterase by sarin. This indicates the differences in the phosphonylation activity of sarin and mipafox. The aging process occurs through a two-step addition-elimination mechanism similar to the phosphonylation process with the addition as the rate-limiting step. The solvent effects have been evaluated by using a CPCM model and the results show that the stationary structures and the negative charges around some important atoms involved in the two processes are not significantly different. However, the energy barrier of the phosphonylation process is remarkably decreased, revealing that this process is feasible in solution.  相似文献   

15.
The insertion reaction mechanism of CBr2 with CH3CH2O has been studied by using the B3LYP/6-311G(d) and CCSD(T)/6-311G(d) at single point. The geometries of reactions,transition state and products were completely optimized. All the transition state is verified by the vibrational analysis and the internal re-action coordinate (IRC) calculations. The results show that reaction (1) is the dominant reaction path,which proceeds via two steps: i) two reactants form an intermediate (IM1),which is an exothermal re-action of 8.62 kJ·mol?1 without energy barrier; ii) P1 is obtained via the TS1 and the H-shift,in which the energy barrier is 44.53 kJ·mol?1. The statistical thermodynamics and Eyring transition state theory with Wigner correction are used to study the thermodynamic and kinetic characters of this reaction in temperature range from 100 to 2200 K. The results show that the appropriate reaction temperature ranges from 200 to 1900 K at 1.0 atm,in which the reaction has a bigger spontaneity capability,equi-librium constant (K) and higher rate constant (k).  相似文献   

16.
The superheavy nucleus 2S6Rf, where rotational band and multi-quasiparticle isomer have been observed recently, has been investigated using total Routhian surface calculations and configuration-constrained calculations of potential energy surface, with the inclusion of β6 defor- mation. The experimental moment of inertial is well reproduced, indicating that the alignment is delayed due to the β6 deformation. A K^π = 5- or 8- state could form a two-quasiparticle isomer that is calculated to have higher fission barrier than the ground state.  相似文献   

17.
The surface tension of molten AlSi20 alloy has been measured by using the sessile drop method at 923-1123 K under argon atmosphere in both heating-up and cooling processes. The result shows that the surface tension of this alloy decreases as long as temperature increases. The results of surface tension and contact angles in heating-up process have differences from those obtained in cooling process, because the metal microstructures have some changes at different temperatures based on the metal genetic theory. The surface tension of molten AISi20 alloy and that of molten pure aluminum have been compared as well, and the temperature coefficient of AlSi20 alloy is slightly lower than that of AI. The result has been analyzed by the linear scanning analysis with ESEM. The concentration of silicon in most region of the bulk is lower than that of the surface and the addition of Si to pure AI decreases the surface tension of molten pure Al.  相似文献   

18.
B3lyp/6-311++g** and mp2/6-311++g** calculations were used to analyze the interaction between CH3SO and HOCl. Nine (complex A: S1A-S9A) and five (complex B: S4B-S7B and S10B) minima were localized on the potential energy surface of CH3SO…HOCl complexes at b3lyp/6-311++g** and mp2/ 6-311++g** computational levels, respectively. The AIM and NBO theories were also applied to explain the nature of the complexes. Bonding energy of complexes A and B corrected with BSSE falls in the ranges of -0.4―-41.4 kJ·mol-1 and -6.9―-35.8 kJ·mol-1 at mp2/6-311++g** level, respectively. The re- sults show that a novel oxygen bond complex (S6) exists in the system, besides hydrogen bond and chlorine bond. Especially, S6B-F, S6B-Br and S7B are blue shifted complexes compared with red shifted S6A, because the electron transfer occurs between LP1(S8) and σ*(O5-Cl7), resulting in the increase of O5-Cl7 and the decrease of vibrational frequency. The complex of S10B has characteristics of both red shift and blue shift.  相似文献   

19.
Large quantities of CdS nanorods are successfully synthesized through Cd(CH3COO)2·2H2o reacting with Na2S·9H2O and EDA in aqueous solution. XRD result shows that the sample is of hexagonal structure. And TEM result shows that the morphologies of the resulting CdS are mainly in three-armed rod-like structure with a diameter of 10--15 nm and a length of 100 nm. The nanocomposites of CdS/PVK with different molar ratios are prepared by spin coating method on tin-doped indium oxide (ITO) substrate. A notable decrease of photoluminescence (PL) efficiency and a significant enhancement of surface photovoltage signal have been observed in CdS/PVK composites when the molar fraction of CdS increases. We interpret these results as the energy level matching between CdS and PVK in nanocomposites. This energy level matching facilitates fast interfacial charge transfer then increases the separation efficiency of electron-hole pairs and the carrier generation efficiency. The detailed charge transfer process has also been demonstrated.  相似文献   

20.
Near monodisperse Fe3O4 sub-microspheres with an average diameter of 170 nm have been synthesized by a solvothermal reduction method, using K3[Fe(CN)6] as the raw material in the absence of any surfactants at 200~C℃ for 24 h. The products were detected by XRD, FESEM, TEM, and XPS. The investigation of the reaction parameters indicates that ethylene glycol plays a key role both as reducing agent and solvent. In addition, the reaction time and temperature also have important influences on the final product. The hysteresis loop of the near monodisperse Fe3O4 sub-microspheres shows a ferromagnetic behavior with saturation magnetization of 60.8 emu/g and coercivity of 124.7Oe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号