首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temporal probing of a number of fundamental dynamical processes requires intense pulses at femtosecond or even attosecond (1 as = 10(-18) s) timescales. A frequency 'comb' of extreme-ultraviolet odd harmonics can easily be generated in the interaction of subpicosecond laser pulses with rare gases: if the spectral components within this comb possess an appropriate phase relationship to one another, their Fourier synthesis results in an attosecond pulse train. Laser pulses spanning many optical cycles have been used for the production of such light bunching, but in the limit of few-cycle pulses the same process produces isolated attosecond bursts. If these bursts are intense enough to induce a nonlinear process in a target system, they can be used for subfemtosecond pump-probe studies of ultrafast processes. To date, all methods for the quantitative investigation of attosecond light localization and ultrafast dynamics rely on modelling of the cross-correlation process between the extreme-ultraviolet pulses and the fundamental laser field used in their generation. Here we report the direct determination of the temporal characteristics of pulses in the subfemtosecond regime, by measuring the second-order autocorrelation trace of a train of attosecond pulses. The method exhibits distinct capabilities for the characterization and utilization of attosecond pulses for a host of applications in attoscience.  相似文献   

2.
Attosecond metrology.   总被引:25,自引:0,他引:25  
The generation of ultrashort pulses is a key to exploring the dynamic behaviour of matter on ever-shorter timescales. Recent developments have pushed the duration of laser pulses close to its natural limit-the wave cycle, which lasts somewhat longer than one femtosecond (1 fs = 10-15 s) in the visible spectral range. Time-resolved measurements with these pulses are able to trace dynamics of molecular structure, but fail to capture electronic processes occurring on an attosecond (1 as = 10-18 s) timescale. Here we trace electronic dynamics with a time resolution of 相似文献   

3.
Atomic transient recorder   总被引:1,自引:0,他引:1  
In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10(-18) s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this scale. The recent observation of single sub-femtosecond (1 fs = 10(-15) s) extreme ultraviolet (XUV) light pulses has stimulated the extension of techniques of femtochemistry into the attosecond regime. Here we demonstrate the generation and measurement of single 250-attosecond XUV pulses. We use these pulses to excite atoms, which in turn emit electrons. An intense, waveform-controlled, few cycle laser pulse obtains 'tomographic images' of the time-momentum distribution of the ejected electrons. Tomographic images of primary (photo)electrons yield accurate information of the duration and frequency sweep of the excitation pulse, whereas the same measurements on secondary (Auger) electrons will provide insight into the relaxation dynamics of the electronic shell following excitation. With the current approximately 750-nm laser probe and approximately 100-eV excitation, our transient recorder is capable of resolving atomic electron dynamics within the Bohr orbit time.  相似文献   

4.
Experience shows that the ability to make measurements in any new time regime opens new areas of science. Currently, experimental probes for the attosecond time regime (10(-18) 10(-15) s) are being established. The leading approach is the generation of attosecond optical pulses by ionizing atoms with intense laser pulses. This nonlinear process leads to the production of high harmonics during collisions between electrons and the ionized atoms. The underlying mechanism implies control of energetic electrons with attosecond precision. We propose that the electrons themselves can be exploited for ultrafast measurements. We use a 'molecular clock', based on a vibrational wave packet in H(2)(+) to show that distinct bunches of electrons appear during electron ion collisions with high current densities, and durations of about 1 femtosecond (10(-15) s). Furthermore, we use the molecular clock to study the dynamics of non-sequential double ionization.  相似文献   

5.
Krüger M  Schenk M  Hommelhoff P 《Nature》2011,475(7354):78-81
Attosecond science is based on steering electrons with the electric field of well controlled femtosecond laser pulses. It has led to the generation of extreme-ultraviolet pulses with a duration of less than 100 attoseconds (ref. 3; 1 as = 10(-18) s), to the measurement of intramolecular dynamics (by diffraction of an electron taken from the molecule under scrutiny) and to ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Electrons liberated from solids by few-cycle laser pulses are also predicted to show a strong light-phase sensitivity, but only very small effects have been observed. Here we report that the spectra of electrons undergoing photoemission from a nanometre-scale tungsten tip show a dependence on the carrier-envelope phase of the laser, with a current modulation of up to 100 per cent. Depending on the carrier-envelope phase, electrons are emitted either from a single sub-500-attosecond interval of the 6-femtosecond laser pulse, or from two such intervals; the latter case leads to spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Owing to field enhancement at the tip, a simple laser oscillator reaches the peak electric field strengths required for attosecond experiments at 100-megahertz repetition rates, rendering complex amplified laser systems dispensable. Practically, this work represents a simple, extremely sensitive carrier-envelope phase sensor, which could be shrunk in volume to about one cubic centimetre. Our results indicate that the attosecond techniques developed with (and for) atoms and molecules can also be used with solids. In particular, we foresee subfemtosecond, subnanometre probing of collective electron dynamics (such as plasmon polaritons) in solid-state systems ranging in scale from mesoscopic solids to clusters and to single protruding atoms.  相似文献   

6.
The tunnelling of a particle through a barrier is one of the most fundamental and ubiquitous quantum processes. When induced by an intense laser field, electron tunnelling from atoms and molecules initiates a broad range of phenomena such as the generation of attosecond pulses, laser-induced electron diffraction and holography. These processes evolve on the attosecond timescale (1?attosecond?≡?1?as = 10(-18)?seconds) and are well suited to the investigation of a general issue much debated since the early days of quantum mechanics--the link between the tunnelling of an electron through a barrier and its dynamics outside the barrier. Previous experiments have measured tunnelling rates with attosecond time resolution and tunnelling delay times. Here we study laser-induced tunnelling by using a weak probe field to steer the tunnelled electron in the lateral direction and then monitor the effect on the attosecond light bursts emitted when the liberated electron re-encounters the parent ion. We show that this approach allows us to measure the time at which the electron exits from the tunnelling barrier. We demonstrate the high sensitivity of the measurement by detecting subtle delays in ionization times from two orbitals of a carbon dioxide molecule. Measurement of the tunnelling process is essential for all attosecond experiments where strong-field ionization initiates ultrafast dynamics. Our approach provides a general tool for time-resolving multi-electron rearrangements in atoms and molecules--one of the key challenges in ultrafast science.  相似文献   

7.
Spectroscopic measurements with increasingly higher time resolution are generally thought to require increasingly shorter laser pulses, as illustrated by the recent monitoring of the decay of core-excited krypton using attosecond photon pulses. However, an alternative approach to probing ultrafast dynamic processes might be provided by entanglement, which has improved the precision of quantum optical measurements. Here we use this approach to observe the motion of a D2+ vibrational wave packet formed during the multiphoton ionization of D2 over several femtoseconds with a precision of about 200 attoseconds and 0.05 ?ngstr?ms, by exploiting the correlation between the electronic and nuclear wave packets formed during the ionization event. An intense infrared laser field drives the electron wave packet, and electron recollision probes the nuclear motion. Our results show that laser pulse duration need not limit the time resolution of a spectroscopic measurement, provided the process studied involves the formation of correlated wave packets, one of which can be controlled; spatial resolution is likewise not limited to the focal spot size or laser wavelength.  相似文献   

8.
Attosecond spectroscopy in condensed matter   总被引:1,自引:0,他引:1  
Comprehensive knowledge of the dynamic behaviour of electrons in condensed-matter systems is pertinent to the development of many modern technologies, such as semiconductor and molecular electronics, optoelectronics, information processing and photovoltaics. Yet it remains challenging to probe electronic processes, many of which take place in the attosecond (1 as = 10(-18) s) regime. In contrast, atomic motion occurs on the femtosecond (1 fs = 10(-15) s) timescale and has been mapped in solids in real time using femtosecond X-ray sources. Here we extend the attosecond techniques previously used to study isolated atoms in the gas phase to observe electron motion in condensed-matter systems and on surfaces in real time. We demonstrate our ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten. Our data reveal a delay of approximately 100 attoseconds between the emission of photoelectrons that originate from localized core states of the metal, and those that are freed from delocalized conduction-band states. These results illustrate that attosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attosecond timescale in condensed-matter systems and on surfaces.  相似文献   

9.
运用一维粒子模拟对经由相对论电子束汤姆逊散射来产生阿秒X射线的两种方案进行了研究。第一种是激光驱动薄膜靶产生相对论电子束以及经过汤姆逊散射产生阿秒X射线,运用倍频探测光的方案可得到更短波长X射线。第二种方案添加了反射厚靶,通过厚靶对驱动激光的反射来减小电子束的横向动量但让其通过,而探测脉冲经过电子束汤姆逊散射后的多普勒频移因子提高,得到的X射线波长也明显减小,光子能量达到1KeV,反射光频谱也明显优与第一种方案.  相似文献   

10.
Attosecond control of electronic processes by intense light fields   总被引:12,自引:0,他引:12  
The amplitude and frequency of laser light can be routinely measured and controlled on a femtosecond (10(-15) s) timescale. However, in pulses comprising just a few wave cycles, the amplitude envelope and carrier frequency are not sufficient to characterize and control laser radiation, because evolution of the light field is also influenced by a shift of the carrier wave with respect to the pulse peak. This so-called carrier-envelope phase has been predicted and observed to affect strong-field phenomena, but random shot-to-shot shifts have prevented the reproducible guiding of atomic processes using the electric field of light. Here we report the generation of intense, few-cycle laser pulses with a stable carrier envelope phase that permit the triggering and steering of microscopic motion with an ultimate precision limited only by quantum mechanical uncertainty. Using these reproducible light waveforms, we create light-induced atomic currents in ionized matter; the motion of the electronic wave packets can be controlled on timescales shorter than 250 attoseconds (250 x 10(-18) s). This enables us to control the attosecond temporal structure of coherent soft X-ray emission produced by the atomic currents--these X-ray photons provide a sensitive and intuitive tool for determining the carrier-envelope phase.  相似文献   

11.
Editor’s note     
The past two decades have witnessed great progress in development of ultrashort laser pulse in laser science, often at an unexpected speed. It has found various applications, both theoretical and practical, in the frontiers of science.  相似文献   

12.
Radiation properties of high-order harmonic generation (HHG) are calculated for atoms in a strong laser field. The laser-duration dependence and the carrier-envelope-phase (CEP) dependence of HHG radiation properties are presented. The CEP dependence of the pure single distribution pulse of HHG radiation properties shows interesting 180° periodic structures. The quantum enhancement of the laser-assisted photo-ionization by femtosecond (1 fs=10^-15 s) and attosecond (1 as=10^-18 s) X-ray pulses and the interference patterns of photo-electron energy spectra are theoretically investigated. Transfer equations are presented for pulse reconstructions. The theoretical root-mean-square time (energy) differences of attosecond pulse reconstructions with different durations are less than 2 as (0,8 eV). These methods may be developed as basic techniques to access ultra-fast measurements and molecular movie.  相似文献   

13.
Since 1998, the interaction of precision spectroscopy and ultrafast laser science has led to several notable accomplishments. Femtosecond laser optical frequency 'combs' (evenly spaced spectral lines) have revolutionized the measurement of optical frequencies and enabled optical atomic clocks. The same comb techniques have been used to control the waveform of ultrafast laser pulses, which permitted the generation of single attosecond pulses, and have been used in a recently demonstrated 'oscilloscope' for light waves. Here we demonstrate intra-cavity high harmonic generation in the extreme ultraviolet, which promises to lead to another joint frontier of precision spectroscopy and ultrafast science. We have generated coherent extreme ultraviolet radiation at a repetition frequency of more than 100 MHz, a 1,000-fold improvement over previous experiments. At such a repetition rate, the mode spacing of the frequency comb, which is expected to survive the high harmonic generation process, is large enough for high resolution spectroscopy. Additionally, there may be many other applications of such a quasi-continuous compact and coherent extreme ultraviolet source, including extreme ultraviolet holography, microscopy, nanolithography and X-ray atomic clocks.  相似文献   

14.
Nonlinear optics in the extreme ultraviolet   总被引:1,自引:0,他引:1  
Sekikawa T  Kosuge A  Kanai T  Watanabe S 《Nature》2004,432(7017):605-608
Nonlinear responses to an optical field are universal in nature but have been difficult to observe in the extreme ultraviolet (XUV) and soft X-ray regions owing to a lack of coherent intense light sources. High harmonic generation is a well-known nonlinear optical phenomenon and is now drawing much attention in attosecond pulse generation. For the application of high harmonics to nonlinear optics in the XUV and soft X-ray regime, optical pulses should have both large pulse energy and short pulse duration to achieve a high optical electric field. Here we show the generation of intense isolated pulses from a single harmonic (photon energy 27.9 eV) by using a sub-10-femtosecond blue laser pulse, producing a large dipole moment at the relatively low (ninth) harmonic order nonadiabatically. The XUV pulses with pulse durations of 950 attoseconds and 1.3 femtoseconds were characterized by an autocorrelation technique, based on two-photon above-threshold ionization of helium atoms. Because of the small cross-section for above-threshold ionization, such an autocorrelation measurement of XUV pulses with photon energy larger than the ionization energy of helium has not hitherto been demonstrated. The technique can be extended to the characterization of higher harmonics at shorter wavelengths.  相似文献   

15.
To study the time evolution of a molecular state in an ultra-fast chemical reaction,the use of shorter pulses with higher photon energy and narrower bandwidth for both pump and probe is necessary.However,quick and precise measurement of their detailed time structures is a challenge.Over the last decade,great efforts have been made to measure an attosecond extreme ultraviolet (XUV) pulse.To date,several methods have been developed to measure the pulse duration and completely reconstruct it.The attosecond spectral phase interferometry for direct electric field reconstruction (SPIDER) and attosecond frequency-resolved optical gating (FROG) techniques are often used.However,these methods use state-of-the-art experimental set-ups and complicated data analysis procedures.To develop attosecond metrology for practical use (e.g.timing,measurement,evaluation,calibration,optimization,pumping,probing),we propose a quick and analytical method to precisely observe an attosecond XUV pulse with laser-assisted photo-ionization.The method is based on determining the laser-related phase of each streaked electron and using a transfer equation for one-step pulse reconstruction without any time-resolved measurements,iterative calculations,or data fitting procedures.Temporal errors of the pulse reconstruction are calculated from the XUV bandwidth.Because the transfer equation establishes a direct connection between the XUV pulse properties,the crucial laser parameters (peak intensity,phase,carrier envelope phase),the atomic ionization potential,and the measured photoelectron energy spectrum,we can use it to study any one of these properties from other known information and probe the dynamic processes of an ultra-fast reaction.  相似文献   

16.
利用啁啾场调控激光波形,理论研究了不同啁啾场对高次谐波光谱的影响. 结果表明:当采用对称中间啁啾调控时,谐波截止能量的延伸及光谱连续区来自于激光中间区域. 当采用不对称负向啁啾调控时,谐波截止能量的延伸及光谱连续区来自于激光下降区域. 虽然,谐波截止能量在不同啁啾调控下都可以得到延伸,但是,不对称负向啁啾场下光谱连续区的强度要比对称中间啁啾场下光谱连续区强度高2个数量级. 最后,通过叠加光谱连续区上的谐波可以获得2个脉宽在38 as的单个阿秒脉冲. 并且,负向啁啾场下获得脉冲强度要比对称中间啁啾场下获得脉冲强度高2个数量级.  相似文献   

17.
利用数值求解含时薛定谔方程的方法,从理论上研究了一维模型He+离子在波长为1064nm的线性啁啾激光和高频脉冲形成的组合场中产生的高次谐波以及由这种高次谐波构造的阿秒脉冲特征.发现在组合场中,由于啁啾脉冲的作用和在适当的时刻加入了高频脉冲,不仅使高次谐波谱的平台区域能得到很大的扩展,而且谐波转化效率也得到有效地提高,当对第二平台区域的不同范围内高次谐波迭加都可得到单个阿秒脉冲,最短可达21阿秒.最后通过经典分析和时频分析解释了这种高次谐波展宽与阿秒脉冲发射过程的特点.  相似文献   

18.
Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.  相似文献   

19.
Y Acremann  M Buess  C H Back  M Dumm  G Bayreuther  D Pescia 《Nature》2001,414(6859):51-54
For the development of future magnetic data storage technologies, the ultrafast generation of local magnetic fields is essential. Subnanosecond excitation of the magnetic state has so far been achieved by launching current pulses into micro-coils and micro-striplines and by using high-energy electron beams. Local injection of a spin-polarized current through an all-metal junction has been proposed as an efficient method of switching magnetic elements, and experiments seem to confirm this. Spin injection has also been observed in hybrid ferromagnetic-semiconductor structures. Here we introduce a different scheme for the ultrafast generation of local magnetic fields in such a hybrid structure. The basis of our approach is to optically pump a Schottky diode with a focused, approximately 150-fs laser pulse. The laser pulse generates a current across the semiconductor-metal junction, which in turn gives rise to an in-plane magnetic field. This scheme combines the localization of current injection techniques with the speed of current generation at a Schottky barrier. Specific advantages include the ability to rapidly create local fields along any in-plane direction anywhere on the sample, the ability to scan the field over many magnetic elements and the ability to tune the magnitude of the field with the diode bias voltage.  相似文献   

20.
利用X_2~+同位素分子(H_2~+、D_2~+、T_2~+)谐波辐射的特点,提出一种有效获得高强度谐波连续区和孤立阿秒脉冲的方法.研究表明,在不同脉宽激光作用下,H_2~+、D_2~+和T_2~+分子可分别进入电荷共振增强电离区域.当激光振幅区域的半个周期正好处于电荷共振增强电离区域时,具有最大辐射能量的谐波能量峰正好具有最佳的辐射强度.随后,在此区域引入半周期单极激光场,被选择出来的谐波能量峰可以继续延伸,进而获得一个仅由单一能量峰贡献而产生的高强度谐波连续区.通过叠加连续区上的谐波可以获得脉宽仅为42 as的孤立阿秒脉冲.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号