首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flushing submarine canyons   总被引:3,自引:0,他引:3  
Canals M  Puig P  de Madron XD  Heussner S  Palanques A  Fabres J 《Nature》2006,444(7117):354-357
The continental slope is a steep, narrow fringe separating the coastal zone from the deep ocean. During low sea-level stands, slides and dense, sediment-laden flows erode the outer continental shelf and the continental slope, leading to the formation of submarine canyons that funnel large volumes of sediment and organic matter from shallow regions to the deep ocean(1). During high sea-level stands, such as at present, these canyons still experience occasional sediment gravity flows(2-5), which are usually thought to be triggered by sediment failure or river flooding. Here we present observations from a submarine canyon on the Gulf of Lions margin, in the northwest Mediterranean Sea, that demonstrate that these flows can also be triggered by dense shelf water cascading (DSWC)-a type of current that is driven solely by seawater density contrast. Our results show that DSWC can transport large amounts of water and sediment, reshape submarine canyon floors and rapidly affect the deep-sea environment. This cascading is seasonal, resulting from the formation of dense water by cooling and/or evaporation, and occurs on both high- and low-latitude continental margins(6-8). DSWC may therefore transport large amounts of sediment and organic matter to the deep ocean. Furthermore, changes in the frequency and intensity of DSWC driven by future climate change may have a significant impact on the supply of organic matter to deep-sea ecosystems and on the amount of carbon stored on continental margins and in ocean basins.  相似文献   

2.
In addition to influencing climatic conditions directly through radiative forcing, increasing carbon dioxide concentration influences the climate system through its effects on plant physiology. Plant stomata generally open less widely under increased carbon dioxide concentration, which reduces transpiration and thus leaves more water at the land surface. This driver of change in the climate system, which we term 'physiological forcing', has been detected in observational records of increasing average continental runoff over the twentieth century. Here we use an ensemble of experiments with a global climate model that includes a vegetation component to assess the contribution of physiological forcing to future changes in continental runoff, in the context of uncertainties in future precipitation. We find that the physiological effect of doubled carbon dioxide concentrations on plant transpiration increases simulated global mean runoff by 6 per cent relative to pre-industrial levels; an increase that is comparable to that simulated in response to radiatively forced climate change (11 +/- 6 per cent). Assessments of the effect of increasing carbon dioxide concentrations on the hydrological cycle that only consider radiative forcing will therefore tend to underestimate future increases in runoff and overestimate decreases. This suggests that freshwater resources may be less limited than previously assumed under scenarios of future global warming, although there is still an increased risk of drought. Moreover, our results highlight that the practice of assessing the climate-forcing potential of all greenhouse gases in terms of their radiative forcing potential relative to carbon dioxide does not accurately reflect the relative effects of different greenhouse gases on freshwater resources.  相似文献   

3.
Galy V  France-Lanord C  Beyssac O  Faure P  Kudrass H  Palhol F 《Nature》2007,450(7168):407-410
Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the organic carbon load capacity of the sediments and organic carbon oxidation in continental margins. At the global scale, previous studies have suggested that about 70 per cent of riverine organic carbon is returned to the atmosphere, such as in the Amazon basin. Here we present a comprehensive organic carbon budget for the Himalayan erosional system, including source rocks, river sediments and marine sediments buried in the Bengal fan. We show that organic carbon export is controlled by sediment properties, and that oxidative loss is negligible during transport and deposition to the ocean. Our results indicate that 70 to 85 per cent of the organic carbon is recent organic matter captured during transport, which serves as a net sink for atmospheric carbon dioxide. The amount of organic carbon deposited in the Bengal basin represents about 10 to 20 per cent of the total terrestrial organic carbon buried in oceanic sediments. High erosion rates in the Himalayas generate high sedimentation rates and low oxygen availability in the Bay of Bengal that sustain the observed extreme organic carbon burial efficiency. Active orogenic systems generate enhanced physical erosion and the resulting organic carbon burial buffers atmospheric carbon dioxide levels, thereby exerting a negative feedback on climate over geological timescales.  相似文献   

4.
Lourens LJ  Sluijs A  Kroon D  Zachos JC  Thomas E  Röhl U  Bowles J  Raffi I 《Nature》2005,435(7045):1083-1087
At the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene-Eocene thermal maximum. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually, comet impact, explosive volcanism or ocean current reorganization and erosion at continental slopes, whereas orbital forcing has been excluded. Here we report a distinct carbonate-poor red clay layer in deep-sea cores from Walvis ridge, which we term the Elmo horizon. Using orbital tuning, we estimate deposition of the Elmo horizon at about 2 million years after the Palaeocene-Eocene thermal maximum. The Elmo horizon has similar geochemical and biotic characteristics as the Palaeocene-Eocene thermal maximum, but of smaller magnitude. It is coincident with carbon isotope depletion events in other ocean basins, suggesting that it represents a second global thermal maximum. We show that both events correspond to maxima in the approximately 405-kyr and approximately 100-kyr eccentricity cycles that post-date prolonged minima in the 2.25-Myr eccentricity cycle, implying that they are indeed astronomically paced.  相似文献   

5.
回顾北冰洋海平面观测和研究现状,总结了北冰洋海平面变化特征和变化机制。北冰洋海平面季节变化受海冰生消、蒸发降水和陆地径流季节变化的影响,由比容变化主导;年际到年代际海平面变化受北极涛动影响显著,可用风场异常导致的淡水分布来解释。盐比容变化是深水洋盆海平面变化的主导因素,由之引起的质量变化控制陆架海域和北冰洋平均的海平面变化。近期波弗特环流区域海平面上升极快,与波弗特高压持续增强及淡水积聚有关。气候变暖会导致北冰洋海平面持续上升。海冰快速减退和格陵兰岛冰川融化对北冰洋海平面变化的影响有待深入研究。数据的短缺和观测的不确定性目前仍然制约北冰洋海平面变化的研究工作,高分辨率数值模拟有望成为未来研究的重要工具。  相似文献   

6.
风应力和科氏力对长江河口没冒沙淡水带的影响   总被引:4,自引:0,他引:4  
应用改进的三维数值模式ECOM,考虑径流、潮汐潮流、地形、混合和口外陆架环流等多种动力因子,研究风应力和科氏力对枯季长江河口南槽没冒沙淡水带形成的影响.枯季没冒沙区域存在着淡水带,其形成的动力机制主要是长江径流和振荡的潮流.本文的数值计算结果表明,在分叉的长江河口,枯季北风产生向岸的埃克曼输运,导致北港流进南港和南槽流出的水平风生环流,阻挡了南槽外海盐水的入侵,有利于没冒沙水域淡水带的形成.在北半球科氏力使水流运动向右偏转,上游径流带来的淡水沿南汇边滩下泄,有利于没冒沙水域沿岸淡水带的形成.  相似文献   

7.
Shevenell AE  Ingalls AE  Domack EW  Kelly C 《Nature》2011,470(7333):250-254
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Ni?o/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling.  相似文献   

8.
Merico A  Tyrrell T  Wilson PA 《Nature》2008,452(7190):979-982
One of the most dramatic perturbations to the Earth system during the past 100 million years was the rapid onset of Antarctic glaciation near the Eocene/Oligocene epoch boundary (approximately 34 million years ago). This climate transition was accompanied by a deepening of the calcite compensation depth--the ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution. Changes in the global carbon cycle, rather than changes in continental configuration, have recently been proposed as the most likely root cause of Antarctic glaciation, but the mechanism linking glaciation to the deepening of calcite compensation depth remains unclear. Here we use a global biogeochemical box model to test competing hypotheses put forward to explain the Eocene/Oligocene transition. We find that, of the candidate hypotheses, only shelf to deep sea carbonate partitioning is capable of explaining the observed changes in both carbon isotope composition and calcium carbonate accumulation at the sea floor. In our simulations, glacioeustatic sea-level fall associated with the growth of Antarctic ice sheets permanently reduces global calcium carbonate accumulation on the continental shelves, leading to an increase in pelagic burial via permanent deepening of the calcite compensation depth. At the same time, fresh limestones are exposed to erosion, thus temporarily increasing global river inputs of dissolved carbonate and increasing seawater delta13C. Our work sheds new light on the mechanisms linking glaciation and ocean acidity change across arguably the most important climate transition of the Cenozoic era.  相似文献   

9.
Curry R  Dickson B  Yashayaev I 《Nature》2003,426(6968):826-829
The oceans are a global reservoir and redistribution agent for several important constituents of the Earth's climate system, among them heat, fresh water and carbon dioxide. Whereas these constituents are actively exchanged with the atmosphere, salt is a component that is approximately conserved in the ocean. The distribution of salinity in the ocean is widely measured, and can therefore be used to diagnose rates of surface freshwater fluxes, freshwater transport and local ocean mixing--important components of climate dynamics. Here we present a comparison of salinities on a long transect (50 degrees S to 60 degrees N) through the western basins of the Atlantic Ocean between the 1950s and the 1990s. We find systematic freshening at both poleward ends contrasted with large increases of salinity pervading the upper water column at low latitudes. Our results extend a growing body of evidence indicating that shifts in the oceanic distribution of fresh and saline waters are occurring worldwide in ways that suggest links to global warming and possible changes in the hydrologic cycle of the Earth.  相似文献   

10.
Changing Arctic Ocean freshwater pathways   总被引:7,自引:0,他引:7  
Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.  相似文献   

11.
Bintanja R  van de Wal RS  Oerlemans J 《Nature》2005,437(7055):125-128
Marine records of sediment oxygen isotope compositions show that the Earth's climate has gone through a succession of glacial and interglacial periods during the past million years. But the interpretation of the oxygen isotope records is complicated because both isotope storage in ice sheets and deep-water temperature affect the recorded isotopic composition. Separating these two effects would require long records of either sea level or deep-ocean temperature, which are currently not available. Here we use a coupled model of the Northern Hemisphere ice sheets and ocean temperatures, forced to match an oxygen isotope record for the past million years compiled from 57 globally distributed sediment cores, to quantify both contributions simultaneously. We find that the ice-sheet contribution to the variability in oxygen isotope composition varied from ten per cent in the beginning of glacial periods to sixty per cent at glacial maxima, suggesting that strong ocean cooling preceded slow ice-sheet build-up. The model yields mutually consistent time series of continental mean surface temperatures between 40 and 80 degrees N, ice volume and global sea level. We find that during extreme glacial stages, air temperatures were 17 +/- 1.8 degrees C lower than present, with a 120 +/- 10 m sea level equivalent of continental ice present.  相似文献   

12.
Knutti R  Flückiger J  Stocker TF  Timmermann A 《Nature》2004,430(7002):851-856
The climate of the last glacial period was extremely variable, characterized by abrupt warming events in the Northern Hemisphere, accompanied by slower temperature changes in Antarctica and variations of global sea level. It is generally accepted that this millennial-scale climate variability was caused by abrupt changes in the ocean thermohaline circulation. Here we use a coupled ocean-atmosphere-sea ice model to show that freshwater discharge into the North Atlantic Ocean, in addition to a reduction of the thermohaline circulation, has a direct effect on Southern Ocean temperature. The related anomalous oceanic southward heat transport arises from a zonal density gradient in the subtropical North Atlantic caused by a fast wave-adjustment process. We present an extended and quantitative bipolar seesaw concept that explains the timing and amplitude of Greenland and Antarctic temperature changes, the slow changes in Antarctic temperature and its similarity to sea level, as well as a possible time lag of sea level with respect to Antarctic temperature during Marine Isotope Stage 3.  相似文献   

13.
The Huanghe River (Yellow River), historically being considered as the second largest world river in terms of sediment load to the sea (approximately 10.8×108 t/a)[1], has experienced drastic declines in its water and sediment fluxes to the coastal ocean over the past 50 years[2,3]1). A series of consequences of decreasing water and sediment discharge emerged including frequent flow cutoff, lifting of riverbed elevation and lower capability of flood con- trolling. In July 2002 the Yellow Ri…  相似文献   

14.
Clift PD  Blusztajn J 《Nature》2005,438(7070):1001-1003
Uplift of mountains driven by tectonic forces can influence regional climate as well as regional drainage patterns, which in turn control the discharge of eroded sediment to the ocean. But the nature of the interactions between tectonic forces, climate and drainage evolution remains contested. Here we reconstruct the erosional discharge from the Indus river over the past 30 million years using seismic reflection data obtained from drill core samples from the Arabian Sea and neodymium isotope data. We find that the source of the Indus sediments was dominated by erosion within and north of the Indus suture zone until five million years ago; after that, the river began to receive more erosional products from Himalayan sources. We propose that this change in the erosional pattern is caused by a rerouting of the major rivers of the Punjab into the Indus, which flowed east into the Ganges river before that time. Seismic reflection profiles from the Indus fan suggest high mass accumulation rates during the Pleistocene epoch partly driven by increased drainage to the Indus river after five million years ago and partly by faster erosion linked to a stronger monsoon over the past four million years. Our isotope stratigraphy for the Indus fan provides strong evidence for a significant change in the geometry of western Himalayan river systems in the recent geologic past.  相似文献   

15.
通过对乌兰木伦河王道恒塔水文站采矿前后河道汛期径流量、输沙量、含沙量及泥沙颗粒粒径等资料的分析发现,与采矿前相比,采矿后同雨量下河道汛期径流量有所增加,但汛期输沙量、汛期径流和输沙量的关系、汛期含沙量以及泥沙颗粒大小等都没有变化。采矿对河流泥沙的增加主要表现在汛期日洪量大于0.1×108m3的大洪水中。1988和1989年两次大洪水的日均含沙量较采矿前同级流量洪水的日均含沙量增加了88.7%。  相似文献   

16.
提出在福建东南沿海地区晚白垩世除了产出有拉张地球动力环境下火山(石帽山群火山岩)和深成(魁岐碱性花岗岩类)产物外,在长乐-南澳断裂带以东的平潭岛还产出有挤压地球动力环境下火山产物.其化学成分和岩系演化趋势显著不同于闽东南南园组和石帽山群火山岩,为独立的钙碱性角闪石英安岩系.其成因可能与库拉板块沿台湾中央山脉东侧向台湾海峡陆块的俯冲有关.闽东南地区早白垩世挤压环境火山产物(南园组火山岩)和晚自垩世拉张环境火山-深层岩系则可能与燕山早期台湾海峡陆块向闽东南大陆边缘的碰撞俯冲,而在晚白垩世停止俯冲,同时在台湾中央山脉东侧发生的俯冲作用所造成的“弧后扩张”有关.  相似文献   

17.
人类活动对长江径流量特性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
随着长江流域水资源开发利用程度的提高以及全球气候的变化,长江径流特性在一定程度上发生了变化.为分析人类活动对长江径流特性的影响,以万县、宜昌、汉口、大通、白河、仙桃6个水文站为研究对象,以丹江口、葛洲坝及三峡水库关闸蓄水时间划分研究时段,利用各站近50 a的日流量资料对比分析了各研究时段长江年、汛期、非汛期、月径流量变化特性.结果表明,水库对河流径流量的影响与水库库容大小、水库运行方式以及测站与水库的距离远近有关.  相似文献   

18.
为剖析气候变化对水文极值非平稳性的影响,采用5 a滑动平均和Mann-Kendall突变检验法对黄河唐乃亥水文站1957—2018年最枯多日平均流量进行非平稳检验;根据Kendall等级相关分析法优选气候指数,以时间和气候指数为协变量构建非平稳广义极值分布(generalized extreme value, GEV)模型,并进行参数估计与模型优选,对比平稳与非平稳GEV模型在枯季径流模拟中的应用效果。研究结果表明:黄河源区枯季径流呈现明显的非平稳特征;平稳GEV模型的模拟值偏高,以西太平洋指数为协变量的非平稳GEV模型对极值的拟合效果较好,且能较好地解释极端枯水事件的波动性。  相似文献   

19.
采用改进的河口海岸海洋三维数值模式ECOM,考虑潮汐、径流、风应力和江表面热通量的作用,计算和分析石洞口电厂扩建工程夏季温排水的输运扩散.数值模式计算流速流向和实测资料符合良好,表明模式能较正确地模拟长江河口的水动力过程.模式计算结果表明,温排水分布在沿岸一带,受径流作用,下游受影响范围远较上游大.在本工程排水口附近,大潮和小潮平均温升分别为2.34和2.84℃,表层温升为1.0℃的面积分别为0.09和0.20 km~2,底层温升为1.0℃的面积均为0.09 km~2.大潮期间流速大,平流和侧向扩散作用大,造成大潮期间本工程排水口附近温升大小、温升沿岸扩展的范围和量值明显比小潮期间小.  相似文献   

20.
Whitmarsh RB  Manatschal G  Minshull TA 《Nature》2001,413(6852):150-154
The rifting of continents involves faulting (tectonism) and magmatism, which reflect the strain-rate and temperature dependent processes of solid-state deformation and decompression melting within the Earth. Most models of this rifting have treated tectonism and magmatism separately, and few numerical simulations have attempted to include continental break-up and melting, let alone describe how continental rifting evolves into seafloor spreading. Models of this evolution conventionally juxtapose continental and oceanic crust. Here we present observations that support the existence of a zone of exhumed continental mantle, several tens of kilometres wide, between oceanic and continental crust on continental margins where magma-poor rifting has taken place. We present geophysical and geological observations from the west Iberia margin, and geological mapping of margins of the former Tethys ocean now exposed in the Alps. We use these complementary findings to propose a conceptual model that focuses on the final stage of continental extension and break-up, and the creation of a zone of exhumed continental mantle that evolves oceanward into seafloor spreading. We conclude that the evolving stress and thermal fields are constrained by a rising and narrowing ridge of asthenospheric mantle, and that magmatism and rates of extension systematically increase oceanward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号