首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 625 毫秒
1.
采用CSS-3940YJ岩石力学试验机,开展单轴压缩条件下岩石预制裂隙扩展破坏过程试验.基于全程变形曲线的试验结果,分析了裂隙倾角对岩石变形、强度、裂隙扩展破坏方式的影响规律.研究结果表明,与完整岩样相比,预制裂隙砂岩变形呈现出局部化渐近破坏特征,其峰值强度、峰值轴向应变均明显降低,且降低幅度随着预制裂隙倾角的增大而减小;岩样宏观破坏模式主要呈现出拉破坏、剪破坏和混合破坏3种,且随着倾角的增加逐渐由剪向拉破坏过渡.值得指出的是:由于在加载过程中预制裂隙两端处于应力集中状态,导致在预制裂隙两端会首先萌生出垂直于裂隙的翼型裂纹,并沿着加载力方向向岩样两端发展,随后在预制裂隙两端会产生反翼型裂纹和次生共面剪切裂纹,裂隙倾角越小产生的次生裂纹数目越多,岩样的贯通破坏模式就会越复杂.  相似文献   

2.
陈祥  肖桃李  折海成 《科学技术与工程》2022,22(26):11567-11576
为研究岩石中裂纹的起裂、扩展和破坏规律,采用PFC2D数值模拟软件结合室内试验对预制单裂隙岩样进行分析。结果表明:(1)当围压为7MPa时,以剪切-拉伸复合破坏模式为主;当围压为14MPa时,试样以“Y”型剪切破坏、单一斜剪破坏模式为主;当围压为21MPa时,试样以“X”型剪切破坏模式为主。(2)试样的破坏模式与围压的大小密切相关,当裂隙长度一定时,随着围压的增大,试样的破坏越明显;当围压一定时,随着裂隙长度的增加,裂纹扩展的规模越大。(3)随着裂隙长度的增加,岩样的峰值强度、弹性模量、起裂应力与损伤应力均呈下降趋势;随着围压的增大,各力学参数均增大,裂隙长度越大时更易诱发新生裂纹,试样强度特性降低。(4)剪切裂纹在整个模拟加载过程中占主导地位且数量始终占比较大;随着围压的增大,拉裂纹逐步占据主导地位,且当围压为21MPa,裂隙长度为39mm时,拉裂纹是剪裂纹的2.73倍;当围压一定时,随着裂隙长度的增加,拉裂纹占比也逐渐减少。  相似文献   

3.
为探究含预制裂隙类岩石材料压缩破坏的力学特性及裂纹演化特征,利用自主研发的YYW-Ⅱ应变控制式无侧限压缩仪及高精度声发射(AE)监测系统,研究了含不同宽度预制裂隙的类岩石材料试样在单轴压缩条件下的受力变形和破坏模式,探究了试样的裂纹演化过程,进而分析了预制裂隙宽度对类岩石材料破坏的影响规律。结果表明:预制裂隙宽度由3 mm增大到5mm时,试样的峰值强度减小,峰值轴向应变增大,压密阶段的应变量亦增大;试样的破坏模式由自身材料性质为主导的剪切破坏,转变为预制裂隙下半部区域张拉破坏诱发的剪切破坏;试样主要裂纹演化由沿预制裂隙面向顶部和下部的发展,转变为预制裂隙下半部区域发育裂纹向上部和底部的扩展。研究成果可为岩土工程相似材料模型破坏特征及裂隙演化的研究提供一定的参考。  相似文献   

4.
含不同倾角裂隙类岩石试件力学参数试验研究   总被引:1,自引:1,他引:0  
基于相似原理,制备出含不同角度裂隙类岩石试件及完整试件,分别对试件进行单轴压缩试验,测出其单轴峰值强度、弹性模量和泊松比;通过巴西劈裂法,测得含不同角度裂隙的试件及完整试件的抗拉强度;通过进行三轴压缩破坏试验,测出其三轴峰值强度,并结合单轴峰值强度,画出裂隙试件及完整试件的莫尔应力圆,从而计算出它们的内摩擦角、内聚力,然后分析这些力学参数的变化规律。  相似文献   

5.
为研究含孔洞-裂隙缺陷岩石损伤的宏细观特征,利用颗粒流程序PFC2D,对不同裂隙倾角、裂隙开度的红砂岩试样进行了单轴压缩数值试验,分析了不同类型缺陷试样的峰值强度、弹性模量、声发射特征、裂纹扩展特征随裂隙倾角及裂隙开度的变化情况。试验结果表明:砂岩的峰值强度和弹性模量与裂隙倾角间具有正相关关系,而裂隙开度的增加对试样峰值强度和弹性模量影响较小;随着裂隙倾角的增大,声发射累计振铃计数呈现前期缓慢减少、后期迅速增大的变化趋势;随着裂隙开度的增大,声发射累计振铃计数呈现先减小后增加再减小的变化趋势;随着裂隙倾角的增加剪切裂纹数量逐渐增加至与拉伸裂纹相近,破裂模式也由拉伸破坏变为拉剪混合破坏;不同开度砂岩破裂模式均为拉伸破坏;当裂隙倾角水平或垂直时,仅有一条裂隙参与主裂纹的形成;当裂隙倾角非水平或非垂直时,两裂隙之间产生崩落区,且均参与主裂纹的形成;随着裂隙开度的增大砂岩试样的破碎程度逐渐增大,除裂隙开度为1 mm时因开度太小导致裂隙闭合未形成崩落区外,其余试样均产生崩落区,且崩落区范围逐渐增大,4种开度砂岩裂隙均参与主裂纹的形成。  相似文献   

6.
透明类岩石内蕴裂纹扩展变形试验研究   总被引:2,自引:2,他引:0  
采用力学试验手段探究岩石受压情况下内部裂纹扩展贯通机理是了解岩石破坏失稳机制的重要手段。由于真实岩体内部裂纹无法直接观察其扩展过程,通过自行研制的透明类岩石材料在RMT-150B多功能全自动刚性岩石伺服试验机上进行单轴压缩力学试验,观察研究透明类岩石内部三维裂纹的扩展贯通机理。这一方法克服了真实岩体不透明的特点,更方便地观察岩体内部裂纹萌生扩展不同阶段的形状。通过对透明岩石内部布置不同长度和角度的裂隙,模拟不同长度和角度的原生节理裂隙对岩体破坏失稳的影响。研究结果表明:含预制裂纹的透明类岩石试件在压缩过程中三维裂纹的起裂扩展要比二维条件下复杂,大致经历了压密,弹性变形,裂纹扩展,脆性破坏四个阶段。含预制裂隙的试件其峰值强度和峰值轴向应变比完整试件均有明显降低,且预制裂隙的长度对峰值强度和峰值轴向应变的降低幅度有一定影响。试验成果无疑对分析真实岩体的破坏失稳机理有着重要的参考价值。  相似文献   

7.
岩石表面裂隙是造成岩体缺陷的重要因素。以红砂岩制作标准岩石试件,通过单轴压缩、实时监测、CT扫描和数值分析方法,分析不同张开度表面裂隙试件裂纹三维扩展模式及其物理力学性质。研究表明:单轴荷载下,表面裂隙从内部开始扩展,并逐渐延伸至试件表面;在试件内部,裂纹面包裹在预制裂隙周边,主要沿最大主应力方向扩展,并在边界的影响下逐渐向试件表面靠近;表面裂隙张开度越小,其扩展方向受边界影响越大;随表面裂隙张开度增大,岩石的峰值强度、峰值应变和弹性模量均变小;数值分析发现,受边界影响,预制裂隙周边的应力影响带向表面倾斜,成为导致裂纹扩展路径向试件表面靠近的重要因素。  相似文献   

8.
采用RMT-150B岩石力学电液刚性伺服控制试验系统对含预制锯齿状结构面类岩石试件进行了单轴压缩试验,包括4级不同的加载速率,定量地分析了加载速率对峰值强度及加载速率对应变等物理力学性态的影响。结果表明,在静态加载速率下,含预制锯齿状结构面类岩石试件的峰值强度与加载速率呈非线性正相关,峰值强度以及对应的应变值与加载速率呈非线性负相关,破坏形式为沿结构面滑动剪切啃断式破坏,锯齿啃断面积基本随应变速率增大而增加。  相似文献   

9.
为了研究非直裂隙对岩石强度及破裂特征的影响,对含弧形裂隙岩样进行单轴压缩模拟,探讨弧形裂隙几何参数对试样宏细观力学行为的影响规律。首先,利用颗粒流程序(PFC)构建花岗岩试样数值模型,通过与完整和含单直裂隙试样室内试验结果进行比较,标定1组能够反映花岗岩力学特性的细观参数。在此基础上,对含不同裂隙倾角α和裂隙长短轴比γ的弧形裂隙试样进行单轴压缩模拟。研究结果表明:1)含弧形裂隙试样的峰值强度和弹性模量随着α增大而增大。当α=0°和45°时,试样的峰值强度和弹性模量随着γ的增大而增大;当α=90°时,试样的峰值强度和弹性模量随着γ的增大而减小。2)含弧形裂隙试样主要发生拉伸破坏,初始裂纹在裂隙尖端萌生,随着α增加,试样的破坏程度逐渐增大;γ主要影响裂纹类型、数量和萌生位置。3)首先在弧形裂隙尖端出现应力集中,初始裂纹产生后在裂纹尖端附近出现应力集中,微裂纹逐渐聚集、连通形成宏观裂纹,宏观裂纹的不断扩展导致试样破坏。  相似文献   

10.
通过预制张开节理类岩石试件,在单轴压缩条件下,研究节理密度及倾角的组合作用对试件强度和变形特征的影响.试验结果表明:(1)随着节理倾角的增大,应力-应变曲线由多峰值转变为单峰值,试件脆性增强,延性减弱;(2)节理密度对当量峰值强度的影响与节理倾角大小有关,对当量弹模的影响呈"V"形变化,即当量弹模随着节理密度的增大呈现先减小后增大的变化规律;(3)当量弹模随节理倾角的增大而增大,在节理倾角为90°的时候达到最大值,为完整试件弹性模量的70%~80%;(4)节理倾角对多节理类岩石试件当量峰值强度和当量弹性模量的影响大于节理密度的影响.对试验结果进一步分析发现:节理密度及节理倾角与应力-应变曲线、当量峰值强度及当量弹性模量之间的关系,其变化规律与试件的破坏过程息息相关,其破坏模式可分为张拉破坏、剪切破坏和复合破坏.  相似文献   

11.
为探究充填体厚度变化对充填体-围岩组合体力学性能的影响规律,开展了5种不同厚度充填体-围岩组合体试件单轴压缩试验,结合数字散斑技术对试件破坏模式的变化进行分析,建立考虑峰后应变软化阶段的分段式损伤本构模型对全过程应力—应变关系进行描述。分析结果表明,充填体厚度变化对组合试件力学性能与破坏模式影响显著。随着充填体厚度由0 mm增加至100 mm,试件峰值强度由94.6 MPa呈指数关系下降至10.1 MPa、峰值应变由0.30下降至0.06,弹性模量呈先下降后上升变化趋势;利用数字散斑技术分析发现,随着充填体厚度增加,破坏模式逐渐由脆性剪切破坏过渡为拉剪复合破坏,最终发展为由充填体内部发生 X 型剪切破坏而引起的拉伸劈裂破坏;通过改变分段式损伤本构模型的分布参数与修正系数,可较好的表征不同充填体厚度试件的全过程应力—应变曲线,利用文献[26]数据进行验证,发现模型适用性较好;充填体厚度越大,由充填体存在而引起的试样初始损伤越大,达到峰值应变时,损伤变量 D未达到1,试件延性破坏特征越明显,破坏后残余强度越高。  相似文献   

12.
含孔洞大理岩破坏特性的颗粒流分析   总被引:1,自引:0,他引:1  
基于室内单轴压缩试验结果,利用颗粒流程序PFC2D,模拟含预制孔洞大理岩在单轴和双轴压缩条件下的破坏过程,分析预制孔洞形状、围压大小以及岩石非均质性对大理岩力学特性和裂纹扩展的影响.数值结果表明:与完整大理岩试样相比,含孔洞试样的峰值强度显著降低,降低程度与孔洞形状有关;围压对含孔洞大理岩试样的力学特性和裂纹扩展有显著影响,含孔洞试样的峰值强度随围压的增加而增加,但偏应力峰值随围压的增加呈先增大后减小的变化趋势;试样的破坏模式与孔洞形状相关,含圆形孔洞试样为类X型剪切破坏,含矩形孔洞或马蹄形孔洞试样为对角剪切破坏;岩石内部的矿物结核影响了裂纹的扩展路径,从而改变试样的宏观破坏模式.微观机理分析表明:孔洞周边裂纹的萌生与扩展过程伴随着应力集中区的释放与转移;含孔洞试样的宏观裂纹有3种模式:孔壁剥落、拉伸裂纹和压剪裂纹.  相似文献   

13.
为研究新延安隧道层状页岩的力学特性和破坏特征,分析层理面不同倾角对岩石力学参数的影响,本文分别进行了不同层理角度下的室内单轴压缩、三轴压缩和巴西劈裂试验及数值单轴压缩和三轴压缩试验。通过室内试验分析,峰值强度随倾角增加呈先减小后增大的趋势;抗压强度呈“U”型趋势,弹性模量呈“V”型变化。通过大量数值模拟试验拓展了室内试验范围并分别拟合了抗压强度和弹性模量随倾角变化关系式;围压的增大弱化了页岩各向异性,但随着围压的不断增大弱化程度减小;黏聚力对层状页岩强度的弱化程度远远大于内摩擦角;抗拉强度随倾角的增大逐渐减小;倾角不同层状页岩的破坏模式也不同,单轴压缩时,0°为张拉破坏,30°~60°时发生由弱面控制的沿层理面发生的剪切滑移破坏,90°时产生劈裂张拉破坏。三轴压缩时不同层理面倾角的页岩试件主要发生剪切破坏。  相似文献   

14.
为了探究页岩的破坏特征以及力学性质与裂缝之间的关系以及影响机理,本文采用RTR-1000岩石三轴力学测试系统对含不同裂缝(控制单一变量,使裂缝的条数、倾角、深度、填充物分别不同)页岩实施三轴实验,研究了不同裂缝形态下页岩的峰值应力、弹性模量以及破坏形式。实验结果表明:随着裂缝深度的增大,试件的弹性模量和峰值应力越小,同时破裂面与轴向应力的夹角变小;随着试件所含的的裂缝角度逐渐增大,页岩样品的弹性模量以及峰值压力的变化均表现凹型,并且随角度增大破裂面形态发生变化,当倾角为45° 时峰值应力和弹性模量降至最低;随着裂缝条数的增加,试件的弹性模量和峰值应力越小,其破坏形式为张拉和剪切破坏共存;随着裂缝充填物中方解石含量的增大,试件的弹性模量和峰值应力先减小再增大,当充填物中方解石含量为50 % 时值最小,并且岩样破坏主要是剪切破坏,随着方解石含量的增加,破裂面越容易经过填充带。  相似文献   

15.
为研究冻土地区不同含水状态下冻结岩石的力学行为,对凝灰岩和玄武岩冻土试件进行了常温20℃和低温-20℃下的单轴压缩试验和巴西劈裂试验.通过观察其变形行为和声发射活动,研究了其断裂破坏过程以及饱水率对材料强度和变形性能的影响.结果表明,冻结岩石的破裂过程分为以下几个阶段:Ⅰ阶段为裂纹气孔闭合;Ⅱ阶段为弹性变形;Ⅲ阶段为裂...  相似文献   

16.
采用相似材料制作出单裂隙类岩石试件,对单裂隙类岩石试件进行单轴、三轴实验研究。结果表明:(1)单裂隙类岩石试件在单轴压缩下,峰值强度随角度的增加而显著增强;(2)单裂隙类岩石试件在三轴作用下,由于围压作用,试件的峰值强度与单轴压缩的峰值强度呈现不同趋势。当在低围压状态下,峰值强度趋势和单轴压缩下相同;而在高围压状态下,45°裂隙试件的峰值强度最低。通过对比高低围压的应力应变曲线发现围压对45°裂隙的影响最大;(3)通过单裂隙试件的单轴、三轴和围压卸载实验,发现稳态蠕变率都具有相同的趋势:稳态蠕变率随角度的增加先增加后减小,完整试件的稳态蠕变率最低;(4)采用实验法对单裂隙试件的蠕变曲线进行拟合,提出一种适合单裂隙类岩石材料蠕变特性蠕变方程。  相似文献   

17.
天然岩体内交叉裂隙按几何形状可分为X形、T形与V形等,其中V形裂隙可以近似看作前两者在“短交叉”情况下的特殊形式,其裂纹扩展破坏规律与其它两种形式存在显著不同。为了探究V形裂隙在荷载作用下对于岩体损伤破坏规律的影响,开展了不同裂隙倾角的类岩石材料单轴压缩光弹性试验,根据应力–光学定律计算试件表面的应变场,分析V形裂隙岩体的损伤破坏规律。结果表明,岩体强度随裂隙倾角增加而增加,但增长速度不断减小,并建立了裂隙倾角与单轴强度的拟合曲线;V形裂隙岩体裂纹扩展首先发生在非交叉端,随后在交叉端产生沿加载轴向的裂纹,当裂隙倾角不大于45°时,随着荷载增加在两个非交叉端之间也会产生宏观裂纹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号