首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between BW755C (3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline), a potent inhibitor of both lipoxygenase and cyclo-oxygenase, and respiratory chain in mitochondria and electron transport particles (ETP) from rat livers was examined. BW755C accelerated the oxygen uptake by mitochondria without the addition of substrate for the respiratory chain. Spectrophotometric study revealed that BW755C was quickly oxidized by cytochrome oxidase in mitochondria to a compound possessing an absorption maximum at 524 nm. p-Phenylenediamine (p-diaminobenzene, PPDA), which, like BW755C, serves as an electron donor to cytochrome oxidase, was shown to inhibit the generation of active oxygen in macrophages; the inhibition was stronger than that of BW755C. These results strongly suggest that the oxidative conversion of BW755C by mitochondrial cytochrome oxidase is associated with its potentially inhibitory action on the active oxygen-generating system in phagocytes.  相似文献   

2.
The pattern of cytochrome c oxidase inhibition by nitric oxide (NO) was investigated polarographically using Keilin-Hartree particles, mitochondria and human neuroblastoma cells. NO reacts with purified cytochrome c oxidase forming either a nitrosyl- or a nitrite-inhibited derivative, displaying distinct kinetics and light sensitivity of respiration recovery in the absence of free NO. Keilin-Hartree particles or cells, respiring either on endogenous substrates alone or in the presence of ascorbate, as well as state 3and state 4mitochondria respiring on glutamate and malate, displayed the rapid recovery characteristic of the nitrite derivative. All systems, when respiring in the presence of tetramethyl-p-phenylenediamine, were characterised by the slower, light-sensitive recovery typical of the nitrosyl derivative. Together the results suggest that the reaction of NO with cytochrome c oxidase in situ follows two alternative inhibition pathways, depending on the electron flux through the respiratory chain.Received 1 April 2003; received after revision 22 May 2003; accepted 3 June 2003  相似文献   

3.
Rat heart myocytes undergoing progressive damage demonstrate morphological changes of shortening and swelling followed by the formation of intracellular vacuoles and plasma membrane blebbing. The damaged myocytes displayed impaired N,N'-tetramethyl-p-phenyldiamine (TMPD) ascorbate-stimulated respiratory activity which was restored by the addition of reduced cytochrome c to the cell culture medium. To clarify the role played by cytochrome c in the impairment of cell respiration, polarographic, spectrophotometric and fluorescence as well as electron microscopy imaging experiments were performed. TMPD/ascorbate-stimulated respiratory activity returned to control levels, at approximately 20 microM cytochrome c, establishing the threshold below which the turnover rate by cytochrome c oxidase in the cell depends on cytochrome concentration. Mildly damaged cardiac myocytes, as indicated by cell shortening, retention of visible striations and free-fluorescein exclusion, together with the absence of lactate dehydrogenase leakage and exclusion of trypan blue, were able to oxidize exogenous cytochrome c and were permeable to fluorescein-conjugated cytochrome c. The results, while consistent with an early cytochrome c release observed at the beginning of cell death, elucidate the role played by cytochrome c in the kinetic control of mitochondrial electron transfer under pathological conditions, particularly those involving the terminal part of the respiratory chain. These data are the first to demonstrate that the sarcolemma of cardiac myocytes, damaged but still viable, is permeable to cytochrome c.  相似文献   

4.
Isolated human term placenta mitochondria catalyse oxidation of external NADH in the presence of cytochrome c. This reaction is insensitive to the respiratory chain inhibitors such as rotenone and antimycin A, and is not coupled to phosphorylation. Comparison of the effect of Mg++ ion on NADH plus cytochrome c oxidation by human term placental, human skeletal muscle and rat skeletal mitochondria showed that Mg++ ion exerts an inhibitory effect in the case of human mitochondria and a stimulatory effect in the case of rat skeletal muscle mitochondria.  相似文献   

5.
Ubiquinol:cytochrome c oxidoreductase (complex III) and ATP synthase (complex V) are important enzymes in the mitochondrial electron transport chain. Defects in mitochondrial respiratory enzymes have been reported for several neurodegenerative diseases. In this study, we applied the proteomic approach to investigate protein levels of complex III core protein and complex V beta chain in brain regions of Alzheimer's disease (AD) and Down syndrome (DS) patients. Complex III core protein 1 was significantly reduced in the temporal cortex of AD patients. Complex V beta chain was significantly reduced in the frontal cortex of DS patients. We conclude that decreased mitochondrial respiratory enzymes could contribute to the impairment of energy metabolism observed in DS. These decreases could also cause the generation of reactive oxygen species and neuronal cell death (apoptosis) in DS as well as AD.  相似文献   

6.
Spinach leaf mitochondria (C3 plant) were capable of oxidizing Glycine. This oxidation was linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport inhibitors. In marked contrast however, neither mitochondria from dark grown plants nor mitochondria from C4 leaf plants were capable of oxidizing this amino acid.  相似文献   

7.
Summary Isolated human term placenta mitochondria catalyse oxidation of external NADH in the presence of cytochrome c. This reaction is insensitive to the respiratory chain inhibitors such as rotenone and antimycin A, and is not coupled to phosphorylation. Comparison of the effect of Mg++ ion on NADH plus cytochrome c oxidation by human term placental, human skeletal muscle and rat skeletal mitochondria showed that Mg++ ion exerts an inhibitory effect in the case of human mitochondria and a stimulatory effect in the case of rat skeletal muscle mitochondria.This work has been supported by a grant from Ministry of Higher Education Science and Technology within the project No. 01.02.  相似文献   

8.
Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain.  相似文献   

9.
Summary The effect of 4 different flavonoids on the respiratory activity of cytochrome oxidase in rat liver homogenate was measured in vitro using the Warburg apparatus. The results show that 3 compounds of the catechin group are especially active.  相似文献   

10.
Summary The specific thiol protease inhibitor, NCO-700, which is related to L-trans-epoxysuccinylpeptides, inhibited oxidant production by chemoattractant-stimulated rabbit polymorphonuclear leukocytes. NCO-700 could also scavenge active oxygen generated from sodium hypochlorite-hydrogen peroxide and hypoxanthine-xanthine oxidase systems.  相似文献   

11.
Cytochrome c is a well-known mitochondrial protein that fulfills life-supporting functions by transferring electrons to the respiratory chain to maintain ATP production. However, during the activation of apoptotic machinery, it is released from mitochondria and, being in the cytosol, it either triggers the activation of the caspase cascade in intrinsic apoptotic pathway, or it is involved in the amplification of extrinsic apoptotic signaling. Accumulating evidence suggests that only unmodified holocytochrome c is efficient in the stimulation of apoptosis. Considering the importance of cytochrome c in both life and death, it was of significant interest to investigate the complete or partial cytochrome c deficiency in vivo. Here, we discuss the importance of distinct amino acid residues for various functions of cytochrome c in cells and mice with targeted cytochrome c mutations.  相似文献   

12.
This study was designed to examine the effect of youth-adulthood transition on hepatic mitochondrial energy efficiency. The changes in basal and palmitate-induced proton leak, which contribute to mitochondrial efficiency, were evaluated in mitochondria isolated from the liver of young and adult rats. Alterations in mitochondrial cytochrome oxidase and aconitase specific activities, and in adenine nucleotide translocator content were also assessed. There was no difference in basal proton leak or thermodynamic coupling and efficiency of oxidative phosphorylation in liver mitochondria between the two rat groups. On the other hand, palmitate-induced proton leak increased significantly in adult rats. The function of this uncoupling could be avoidance of elevated formation of reactive oxygen species, which are known to accelerate ageing.Received 17 February 2004; received after revision 30 March 2004; accepted 1 April 2004  相似文献   

13.
The mechanism by which a new naphthoquinone derivative, the 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1,4-naphthoquinone-4-imine (INQI-E) has antibacterial effect againstStaphylococcus aureus was studied. The interaction of INQI-E with the bacteria was followed by absorption spectroscopy at 323 and 490 nm. The absorption band of INQI-E at 490 nm undergoes a hypochromic shift with a decrease of intensity. This effect was found to be reversible by oxygenation during the first hours of incubation. The participation of an oxidation-reduction process related to the respiratory chain was demonstrated by oxygen consumption. An increase in O2 uptake and inhibition ofS. aureus growth was observed. Experiments with three inhibitors of the respiratory chain demonstrated that the pathway induced by INQI-E was antimycin-resistant and KCN- and salicylhydroxamic acid (SHAM)-sensitive, which suggests that INQI-E is capable of diverting the normal electron flow to an alternate superoxide-producing route. On the other hand, experiments with Tiron, a specific scavenger of superoxide, hindered the effect of INQI-E againstS. aureus, indicating that the inhibitory growth effect of this quinone-imine is mainly due to the production of the cytotoxic superoxide radical.  相似文献   

14.
Nitric oxide and cellular respiration   总被引:7,自引:0,他引:7  
The role of nitric oxide (NO) as a signalling molecule involved in many pathophysiological processes (e.g., smooth muscle relaxation, inflammation, neurotransmission, apoptosis) has been elaborated during the last decade. Since NO has also been found to inhibit cellular respiration, we review here the available information on the interactions of NO with cytochrome c oxidase (COX), the terminal enzyme of the respiratory chain. The effect of NO on cellular respiration is first summarized to present essential evidence for the fact that NO is a potent reversible inhibitor of in vivo O2 consumption. This information is then correlated with available experimental evidence on the reactions of NO with purified COX. Finally, since COX has been proposed to catalyze the degradation of NO into either nitrous oxide (N2O) or nitrite, we consider the putative role of this enzyme in the catabolism of NO in vivo.  相似文献   

15.
PF9601N, N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine, an monoamine oxidase (MAO) B inhibitor, has shown neuroprotective properties against dopaminergic toxins. To elucidate the mechanisms involved in this protection, the effect of PF9601N on mitochondria was assessed. PF9601N prevents mitochondrial swelling, drop in the electrical potential and oxidation of sulfhydryl groups, glutathione and pyridine nucleotides induced by Ca2+. These observations demonstrate the protective effect of PF9601N on the induction of mitochondrial permeability transition. This protection is due to the interaction of the secondary protonated amino group in the molecule with pore-forming structures and to its antioxidant property, rather than to inhibition of MAO B activity. PF9601N also prevents the release of cytochrome c from mitochondria, suggesting its potential inhibitory effect on mitochondria-mediated apoptosis. The low IC50 value for this inhibition, in comparison with deprenyl, make it a more efficient compound than propargylamines and other amines in protecting the bioenergetic functions of mitochondria. Received 9 March 2006; received after revision 10 April 2006; accepted 21 April 2006  相似文献   

16.
We investigated mitochondrial toxicity of four lipophilic stains (cerivastatin, fluvastatin, atorvastatin, simvastatin) and one hydrophilic statin (pravastatin). In L6 cells (rat skeletal muscle cell line), the four lipophilic statins (100 micromol/l) induced death in 27-49% of the cells. Pravastatin was not toxic up to 1 mmol/l. Cerivastatin, fluvastatin and atorvastatin (100 micromol/l) decreased the mitochondrial membrane potential by 49-65%, whereas simvastatin and pravastatin were less toxic. In isolated rat skeletal muscle mitochondria, all statins, except pravastatin, decreased glutamate-driven state 3 respiration and respiratory control ratio. Beta-oxidation was decreased by 88-96% in the presence of 100 micromol/l of the lipophilic statins, but only at higher concentrations by pravastatin. Mitochondrial swelling, cytochrome c release and DNA fragmentation was induced in L6 cells by the four lipophilic statins, but not by pravastatin. Lipophilic statins impair the function of skeletal muscle mitochondria, whereas the hydrophilic pravastatin is significantly less toxic.  相似文献   

17.
The long-recognized fact that oxidative stress within mitochondria is a hallmark of mitochondrial dysfunction has stimulated the development of mitochondria-targeted antioxidant therapies. Melatonin should be included among the pharmacological agents able to modulate mitochondrial functions in cancer, given that a number of relevant melatonin-dependent effects are triggered by targeting mitochondrial functions. Indeed, melatonin may modulate the mitochondrial respiratory chain, thus antagonizing the cancer highly glycolytic bioenergetic pathway of cancer cells. Modulation of the mitochondrial respiratory chain, together with Ca2+ release and mitochondrial apoptotic effectors, may enhance the spontaneous or drug-induced apoptotic processes. Given that melatonin may efficiently counteract the Warburg effect while stimulating mitochondrial differentiation and mitochondrial-based apoptosis, it is argued that the pineal neurohormone could represent a promising new perspective in cancer treatment strategy.  相似文献   

18.
Regulated protein degradation by ATP-dependent proteases plays a fundamental role in the biogenesis of mitochondria. Membrane-bound and soluble ATP-dependent proteases have been identified in various subcompartments of this organelle. Subunits composing these proteases are evolutionarily conserved from yeast to humans and, in support of an endosymbiotic origin of mitochondria, evolved from prokaryotic ancestors: the PIM1/Lon protease is active in the matrix of mitochondria, while the i-AAA protease and the m-AAA protease mediate the turnover of inner membrane proteins. Most of the knowledge concerning the biogenesis and the physiological role of ATP-dependent proteases comes from studies in the yeast Saccharomyces cerevisiae. Proteases were found to be required for mitochondrial stasis, for the maintenance of the morphology of the organelle and for mitochondrial genome integrity. ATP-dependent proteolysis is crucial for the expression of mitochondrially encoded subunits of respiratory chain complexes and for the assembly of these complexes. Hence, mitochondrial ATP-dependent proteases exert multiple roles which are essential for the maintenance of cellular respiratory competence.  相似文献   

19.
M Younes 《Experientia》1985,41(4):479-481
Superoxide dismutase, catalase and methional proved capable of inhibiting the microsomal oxidation of thiobenzamide, which is most probably catalyzed by the flavin-containing monooxygenase. This indicates that excited oxygen species (e.g. X O-2,H2O2, X OH) are involved in the catalytic cycle of this enzymatic reaction. CO, which inhibits the cytochrome P-450-dependent oxygen radical formation, had no effect on the oxidation reaction, suggesting that the source of the reactive oxygen species is not the microsomal mixed-function oxidase.  相似文献   

20.
Summary Camphor at <8 moles/mg protein reduced the rate of oxygen consumption by rat liver mitochondria. The effect occurs only with NAD+-linked substrates. Succinate linked respiration was inhibited but this appears to be caused by some conversion of succinate to malate. At higher levels, camphor increases oxygen consumption with succinate substrate, by uncoupling at site II.Acknowledgment. D.F.G.-C. is grateful to the New Zealand Cancer Society (Wellington Branch), for financial support. We thank Mrs E. Dye for technical assistance and Dr W. Jordan for valuable discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号