首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.  相似文献   

2.
3.
Ion channels in plant signaling   总被引:5,自引:0,他引:5  
Plant ion channel activities are rapidly modulated in response to several environmental and endogenous stimuli such as light, pathogen attack and phytohormones. Electrophysiological as well as pharmacological studies provide strong evidence that ion channels are essential for the induction of specific cellular responses, implicating their tight linkage to signal transduction cascades. Ion channels propagate signals by modulating the membrane potential or by directly affecting cellular ion composition. In addition, they may also be effectors at the end of signaling cascades, as examplified by ion channels which determine the solute content of stomatal guard cells. Plant channels are themselves subject to regulation by a variety of cellular factors, including calcium, pH and cyclic nucleotides. In addition, they appear to be regulated by (de)-phosphorylation events as well as by direct interactions with cytoskeletal and other cellular proteins. This review summarizes current knowledge on the role of ion chan nels in plant signaling.  相似文献   

4.
The mitochondrial oxidative phosphorylation system is responsible for providing the bulk of cellular ATP molecules. There is a growing body of information regarding the regulation of this process by a number of second messenger-mediated signal transduction mechanisms, although direct studies aimed at elucidating this regulation are limited. The main second messengers affecting mitochondrial signal transduction are cAMP and calcium. Other second messengers include ceramide and reactive oxygen species as well as nitric oxide and reactive nitrogen species. This review focuses on available data on the regulation of the mitochondrial oxidative phosphorylation system by signal transduction mechanisms and is organised according to the second messengers involved, because of their pivotal role in mitochondrial function. Future perspectives for further investigations regarding these mechanisms in the regulation of the oxidative phosphorylation system are formulated. Received 11 December 2005; received after revision 14 January 2006; accepted 6 February 2006  相似文献   

5.
In eukaryotes, cellular energy in the form of ATP is produced in the cytosol via glycolysis or in the mitochondria via oxidative phosphorylation and, in photosynthetic organisms, in the chloroplast via photophosphorylation. Transport of adenine nucleotides among cell compartments is essential and is performed mainly by members of the mitochondrial carrier family, among which the ADP/ATP carriers are the best known. This work reviews the carriers that transport adenine nucleotides into the organelles of eukaryotic cells together with their possible functions. We focus on novel mechanisms of adenine nucleotide transport, including mitochondrial carriers found in organelles such as peroxisomes, plastids, or endoplasmic reticulum and also mitochondrial carriers found in the mitochondrial remnants of many eukaryotic parasites of interest. The extensive repertoire of adenine nucleotide carriers highlights an amazing variety of new possible functions of adenine nucleotide transport across eukaryotic organelles.  相似文献   

6.
In isolated goldfish hepatocytes underaerobic conditions the energy requirement for the sodium pump (calculated from Rb+ flux) is closely matched by the ouabain-sensitive fraction of oxygen consumption, whereas during in vitroanoxia (cyanide inhibition of the electron transport chain) the measured ATP demand of the sodium pump clearly exceeds ouabain-sensitive ATP production by anaerobic glycolysis. We conclude that when the energy status of cells is low, part or all of the ATP spared by the inhibition of a particular function may be used for fuelling other ATP-consuming functions.  相似文献   

7.
For better comprehension of the metabolic syndrome, it is necessary to differentiate the effect of insulin on glucose metabolism on the one hand, and on other metabolic activities on the other hand. Whereas glucose utilization is affected by insulin resistance, the effect of insulin on lipid metabolism, ion and aminoacid transport does not seem to be diminished. Lipid metabolism, however, seems to play a crucial role in the induction of the vicious cycle. Increased energy and fat ingestion may be due to an increased number of galanin secreting cells in the hypothalamus. The excessive fat intake results in an increased rate of release of insulin and increased influx of triglycerides into the blood. From these triglycerides an excess of free fatty acids is released by the action of lipoprotein lipase. The increased plasma free fatty acid level then results in insulin resistance affecting glucose metabolism. Also, these free fatty acids may impair the secretion of insulin. Induction of insulin resistance results in higher glucose levels, which may cause hyperinsulinemia. Hyperinsulinemia maintains the elevation of triglycerides. When diabetes becomes overt and elevated glucose levels prevail, the hyperinsulinism acts on the metabolic pathways which are still sensitive to insulin, namely lipid metabolism, aminoacid transport and ion transport.  相似文献   

8.
9.
10.
The mitochondrial H+-ATP synthase is a primary hub of cellular homeostasis by providing the energy required to sustain cellular activity and regulating the production of signaling molecules that reprogram nuclear activity needed for adaption to changing cues. Herein, we summarize findings regarding the regulation of the activity of the H+-ATP synthase by its physiological inhibitor, the ATPase inhibitory factor 1 (IF1) and their functional role in cellular homeostasis. First, we outline the structure and the main molecular mechanisms that regulate the activity of the enzyme. Next, we describe the molecular biology of IF1 and summarize the regulation of IF1 expression and activity as an inhibitor of the H+-ATP synthase emphasizing the role of IF1 as a main driver of energy rewiring and cellular signaling in cancer. Findings in transgenic mice in vivo indicate that the overexpression of IF1 is sufficient to reprogram energy metabolism to an enhanced glycolysis and activate reactive oxygen species (ROS)-dependent signaling pathways that promote cell survival. These findings are placed in the context of mitohormesis, a program in which a mild mitochondrial stress triggers adaptive cytoprotective mechanisms that improve lifespan. In this regard, we emphasize the role played by the H+-ATP synthase in modulating signaling pathways that activate the mitohormetic response, namely ATP, ROS and target of rapamycin (TOR). Overall, we aim to highlight the relevant role of the H+-ATP synthase and of IF1 in cellular physiology and the need of additional studies to decipher their contributions to aging and age-related diseases.  相似文献   

11.
The proliferative capacity of Chick embryo fibroblasts was modified by Con A treatment. Con A decreased the growth of fibroblasts from young embryos (8 days), whereas the lectin stimulated the growth of fibroblasts from older embryos (16 days). This differential effect of Con A did not result from changes in cellular permeability to thymidine, but rather from Con A induced modifications of hexose transport. Changes in hexose transport would cause, as a response, parallel modifications in glycolysis and hence energy charge, which would alter proliferative capacity.  相似文献   

12.
The reprogramming of glucose metabolism from oxidative to glycolytic metabolism, known as the Warburg effect, is an anomalous characteristic of cancer cell metabolism. Recent studies have revealed a subset of microRNAs (miRNAs) that play critical roles in regulating the reprogramming of glucose metabolism in cancer cells. These miRNAs regulate cellular glucose metabolism by directly targeting multiple metabolic genes, including those encoding key glycolytic enzymes. In the first part of this review, we summarized the recent knowledge of miRNA regulation in the reprogramming of glucose metabolism in cancer cells and discussed the potential utilization of the key miRNA regulators as metabolic targets for developing new antitumor agents. Then, we summarized recent advances in methods and techniques for studying miRNA regulation in cancer cell metabolism.  相似文献   

13.
Metabolism and signaling activities of nuclear lipids   总被引:1,自引:0,他引:1  
Apart from the lipids present in the nuclear envelope, the nucleus also contains lipids which are located further inside and are resistant to treatment with nonionic detergents. Evidence is being accumulated on the importance of internal nuclear lipid metabolism. Nuclear lipid metabolism gives rise to several lipid second messengers that function within the nucleus. Moreover, it is beginning to emerge that nuclear lipids not only act as precursors of bioactive second messengers but may be directly involved in regulation of nuclear structure and gene expression. Over the last 10years, especially the role of the inositol lipid cycle in nuclear signal transduction has been extensively studied. This cycle is activated following a variety of stimuli and is regulated independently from the inositide cycle located at the plasma membrane. However, the nucleus contain other lipids, such as phosphatidylcholine, sphingomyelin, fatty acids and eicosanoids. There are numerous reports which suggest that these classes of nuclear lipids may play roles in the nucleus as important as those of phosphoinositides. This review aims at highlighting the most important aspects regarding the metabolism and signaling activities of nuclear phosphatidylcholine, sphingomyelin, fatty acids and eicosanoids.Received 7 November 2003; received after revision 18 December 2003; accepted 29 December 2003  相似文献   

14.
The critical importance of long-chain fatty acids in cellular homeostasis demands an efficient uptake system for these fatty acids and their metabolism in tissues. Increasing evidence suggests that the plasma-membrane-associated and cytoplasmic fatty-acid-binding proteins are involved in cellular fatty acid uptake, transport and metabolism in tissues. These binding proteins may also function in the fine tuning of cellular events by modulating the metabolism of long-chain fatty acids implicated in the regulation of cell growth and various cellular functions. Several membrane-associated fatty-acid-binding/transport proteins such as plasma membrane fatty-acid-binding protein (FABPpm, 43 kDa), fatty acid translocase (FAT, 88 kDa) and fatty acid transporter protein (FATP, 63 kDa) have been identified. In the feto-placental unit, preferential transport of maternal plasma arachidonic and docosahexaenoic acids across the placenta is of critical importance for fetal growth and development. Our studies have shown that arachidonic and docosahexaenoic acids are preferentially taken up by placental trophoblasts for fetal transport. The existence of a fatty-acid-transport system comprising multiple membrane-binding proteins (FAT, FATP and FABPpm) in human placenta may be essential to facilitate the preferential transport of maternal plasma fatty acids in order to meet the requirements of the growing fetus. The preferential uptake of arachidonic and docosahexaenoic acids by the human placenta has the net effect of shunting these maternal plasma fatty acids towards the fetus. The roles of plasma membrane-associated binding/transport proteins (FABPpm, FAT and FATP) in tissue-specific fatty acid uptake and metabolism are discussed.  相似文献   

15.
Summary The regulation of cellular growth and proliferation is perhaps the most investigated and elusive problem in cell biology and seems to be possible to solve from almost any angle of study chosen. Among the non-systemic factors that have been discussed are genetic damage, genomic control, regulation by stimulatory and inhibitory peptide factors such as EGF, chalones, and fibronectin, protein kinase activition with tyrosine phosphorylation, adenylylcyclase and cAMP, cGMP, membrane perturbations and specifically in tumours the failure of the Pasteur effect in control of glycolysis, excessive membrane ATPase activity, and excessive hydrolytic and proteolytic activities at the cell surface. This article focusses on the central role of fluxes within the plasma membrane and re-examines the possibility that changes of flux of metabolites, ions, and reducing equivalents may be the common denominator regulating cellular proliferation.  相似文献   

16.
E Cervén 《Experientia》1990,46(10):993-999
The regulation of cellular growth and proliferation is perhaps the most investigated and elusive problem in cell biology and seems to be possible to solve from almost any angle of study chosen. Among the non-systemic factors that have been discussed are genetic damage, genomic control, regulation by stimulatory and inhibitory peptide factors such as EGF, chalones, and fibronectin, protein kinase activation with tyrosine phosphorylation, adenylylcyclase and cAMP, cGMP, membrane perturbations and specifically in tumours the failure of the Pasteur effect in control of glycolysis, excessive membrane ATPase activity, and excessive hydrolytic and proteolytic activities at the cell surface. This article focuses on the central role of fluxes within the plasma membrane and re-examines the possibility that changes of flux of metabolites, ions, and reducing equivalents may be the common denominator regulating cellular proliferation.  相似文献   

17.
Most tumor cells exhibit a glycolytic phenotype. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Among the agents that can suppress glycolysis is citrate, a member of the Krebs cycle and an inhibitor of phosphofructokinase. Here, we show that citrate can trigger cell death in multiple cancer cell lines. The lethal effect of citrate was found to be related to the activation of apical caspases-8 and -2, rather than to the inhibition of cellular energy metabolism. Hence, increasing concentrations of citrate induced characteristic manifestations of apoptosis, such as caspase-3 activation, and poly-ADP-ribose polymerase cleavage, as well as the release of cytochrome c. Apoptosis induction did not involve the receptor-mediated pathway, since the processing of caspase-8 was not attenuated in cells deficient in Fas-associated protein with Death Domain. We propose that the activation of apical caspases by citrate could be explained by its kosmotropic properties. Caspase-8 is activated by proximity-induced dimerization, which might be facilitated by citrate through the stabilization of intermolecular interactions between the proteins.  相似文献   

18.
19.
Hypoxia refers to environmental or clinical settings that potentially threaten tissue oxygen homeostasis. One unique aspect of skeletal muscle is that, in addition to hypoxia, oxygen balance in this tissue may be further compromised when exercise is superimposed on hypoxia. This review focuses on the cellular and molecular responses of human skeletal muscle to acute and chronic hypoxia, with emphasis on physical exercise and training. Based on published work, it is suggested that hypoxia does not appear to promote angiogenesis or to greatly alter oxidative enzymes in skeletal muscle at rest. Although the HIF-1 pathway in skeletal muscle is still poorly documented, emerging evidence suggests that muscle HIF-1 signaling is only activated to a minor degree by hypoxia. On the other hand, combining hypoxia with exercise appears to improve some aspects of muscle O2 transport and/or metabolism.  相似文献   

20.
The melastatin-related transient receptor potential member 7 (TRPM7) is a unique fusion protein with both ion channel function and enzymatic α-kinase activity. TRPM7 is essential for cellular systemic magnesium homeostasis and early embryogenesis; it promotes calcium transport during global brain ischemia and emerges as a key player in cancer growth. TRPM7 channels are negatively regulated through G-protein-coupled receptor-stimulation, either by reducing cellular cyclic adenosine monophosphate (cAMP) or depleting phosphatidylinositol bisphosphate (PIP2) levels in the plasma membrane. We here identify that heterologous overexpression of human TRPM7-K1648R mutant will lead to disruption of protease or purinergic receptor-induced calcium release. The disruption occurs at the level of Gq, which requires intact TRPM7 kinase phosphorylation activity for orderly downstream signal transduction to activate phospholipase (PLC)β and cause calcium release. We propose that this mechanism may support limiting GPCR-mediated calcium signaling in times of insufficient cellular ATP supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号