2020 % 11 A Wl K2R RO Nov. 2020
B5TE el Journal of Sichuan University (Natural Science Edition) Vol. 57 No. 6

doi: 10. 3969/j. issn. 0490-6756. 2020. 06. 007

X TFTBRAMASEA Lazar o]
Ao, & Omt, Bf &8

(L PR H 27 Be » AR 6100645 2. PYRGRAEA 5 5E T4 Be . HIK 400715;
3. PUAR I B~ BE . HHR 610039)

W B, %0 HEEEEH. ErdosStraus H18,23% % =2 8, Diophantine 7 %2 % =%

% % BA EEKME (x.y,2). & p=5 AiFEFEFH. R, Lazar iE8 Diophantine 7 #2 % =
% %Jr BERRxy<<V/2/2REA x5y ZEWEEKMB (x,y,2). B, Lazar $2 3 9
M. EERFRPAS/pHId/p, REREMLER? X2 Sierpinski 3 9 —AFA. K

S 4E8] Diophantine 7]‘%;; i+ 1 +‘ BRABRE .y BEH 2y <<J/z/2 0 EEHMB(x,y,

s EPaABRE a<TI<p éﬁi%ﬁ‘iﬁ XA T LR Lazar B, ) T Lazar 9% R, 4E
Bl 75 ik e T AL £ 2R 755}”-%*%35’\* F &

X ##17: Diophantine 7 #2; # 4-44; #7145 4L; Erdos-Straus 3% 42
FRESES. 0156.1; 0156.7 SCERARIRAD. A iaéﬁﬂa 0490-6756(2020)06-1067-06

On a problem of Lazar on unit fractions
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Abstract; Let n be a positive integer. The well-known Erdés-Straus conjecture asserts that the positive
integral solution of the Diophantine equation % :% +% +% always exists when n=2. Recently, Lazar
investigated some properties of the solutions to the above Diophantine equation in the special case that n
is a prime number. Let p=5 be a prime number. Lazar showed that there are no triple of positive inte-
gers (x,v,z) which is solution of the Diophantine equation % :% +—= 1 + 1 in the range xy<+/z/2 and
(x,y) =1. Meanwhile, Lazar pointed out that it would be interesting to find an analog of this result for

5/p instead of 4/p, which is also a conjecture due to Sierpinski. In this paper, we answer Lazar’s ques-

tion affirmatively and also extended Lazar’s result by showing that the Diophantine equation % :% %
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1 . . . .
< does not have any integer solution (x,y,2) such that x and y are coprime and xy<{+/z/2, where a is

a positive integer such that a <<7<{p. Our proof mainly uses the continued fraction expansion of s

Keywords: Diophantine equation; Continued fraction; Convergent; Erdds-Straus conjecture

(2010 MSC 11L.05)

1 Introduction

The Rhind papyrus is amongst the oldest
written mathematics that has come down to us,
which concerns the representation of rational
number as the sum of unit fractions:

m :l _._i 4o _Q_i'

n o x X T
This has suggested numerous problems, many of
which are unsolved, and continues to suggest new
problems. One of these problems is the Erdos-

U7 which concerns the follow-

Straus conjecture
ing Diophantine equation

41,11 (D

n xr y =z
Let N denote the set of all the positive integers.
For any positive integer n, let f(n) denote the
number of positive integral solutions (x,y,z2) €
N® to the Diophantine equation (1), that is,

SOr= (G ys s = 4L

r oy =z
(x,y,2) EN*},
Then one has
f(1)=0,f(2)=3,7(3)=12, f(4) =10,
f(5)=12,--.
The Erdos-Straus conjecture asserts that f(n) >0
for all n==2 (see, for example, [3,5]). Some re-
lated results are provided in Refs. [1,4,6-7,9-11,
13].
In 2015, Elsholtz and Tao'*! obtained a num-
ber of upper and lower bounds of f(n) or f(p)
for typical values of natural number n and prime
12 assumed that 7 is an odd

prime number p and showed that %: 1,1 + 1

p. Recently, lLazar

il +7

r 0y =z
cannot have integeral solution such that x and y
are coprime with zy<+/z/2. At the end of Ref.
[12], Lazar pointed out that it would be interest-

ing to find an analog of the main result for %

with a >4 instead of % So, in this paper, we

present an analog of this result for the case a<<7.
That is, we have the following main result of this
paper.

Theorem 1. 1

number and a be an integer with 1<Ca<{6. Then

Let p=7 be an arbitrary prime

there are no triple (x,y,2) of positive integers

which is a solution of the Diophantine equation
a_1,1,1 ()
P x oy b4

in the range xy<{+/z/2 with ged(x,y) =1.
Evidently, Theorem 1.1 gives an affirmative

answer to Lazar’s questiont'*,

2 Several lemmas

For any positive integer n, let ay,a;,***»a, be
real numbers with ¢; >0 for i =1,+-,n. We define
the finite simple continued fraction, denoted by

[aosars=*sa, s as follows:

[ao 3A1 505, | —ag T
[25] +

An—1 +i

n

The k-th convergents of the continued fraction

‘e ak]v

where £ is a non-negative integer with & <(n.

[ao; ars ***s a, | is defined by [ao; ars **
Before giving the proof of Theorem 1.1, we
need the following classical result of the theory of
continued fraction which can be found in Ref.
[8].
Lemma 2. 1'%
integers with ged(r,s) =1. If

1
2%

Let m,n,r and s be positive

m_r
n S
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ro. m
then — is one of the convergents of o
s

In the rest of this paper, we always let p =7

be a prime number. The following results are a-

bout the continued fraction expansions of ra %
and ﬁ

P

Lemma 2.2 lLet p =7 be a prime number.

Then each of the following is true:

(a) If p=1(mod 3), then % :[O;pTil,S:I

_ 3
=
(b I p=2(mod 3), then%:[o;%%,
3 3
p—2 1

}s

and the convergents are {0,

> Jw

2] and the convergents are {0,

*b\\w

. . 3 . .
Proof The continued fraction of = is entire-

ly determined by the Euclidean algorithm between
3 and p.
(a) Let p=1 (mod 3). Then by the Euclide-

an algorithm, we obtain that

3=px0+3, p=3x21

3 +1, 3=1X3+0.

s 3] The successive conver-

Thus - = [O
p
gents are given by

co =0, ¢ =[0; ]931] 1 ])31

c; =[0; ,3]—

53,
pil’p .
(b) Let p=2 (mod 3). Then we deduce that

So the convergents are {0,

;2+2, 3=2x1+1,

3=px0+3, p:3><P3

2=1X2+0.
It follows that % =[0; %2 ,1,27]. The succes-

sive convergents are given by

p—2-_ 1 _ 3
Oa c — [O 3 ] H—9 p729
3
_rp.b—2 _ 1 _ 3
e L0 T T
3 1

and

:[O,LZ,I,Z:I :é

3 3 3
p2p Ll p
pected. This completes the proof of Lemma 2. 2.

So the convergents are {0 } as ex-

Similarly, we can get the continued fraction

expansion of 2 as follows.

Lemma 2,3 Let p=7 be a prime number.

Then each of the following is true:

(a) If p=1(mod 5), then Z 7[0 5]
and the convergents are {0, 2+, }3
1 p
(b) If p=2 (mod 5), then ;:[o;%z,z,
5 10 5

o)

2] and the convergents are {0 =2 0p 41 p

(o) If p=3(mod 5), thenzz[o;f’S;,LL

5 5
2] and the convergents are {0, =3 pi2°
10 Q}
2p—1"p '’

(d) Tf p=4 (mod 5). then%:[o;])g4,l,

5 5

4] and the convergents are {O’])*él’[)"—l s

> fon

. . 5. .
Proof The continued fraction of Z is entire-

ly determined by the Euclidean algorithm between
5 and p.
(a) If p=1 (mod 5), then the Euclidean al-

gorithm give us that

5=pX0+5, p=5 X%l+1, 5=1%5 0.

Hence one derives that % = [O = 5] The
successive convergents are given by
¢ =050, :[O;j)glj :é :p5—1’
)
—[0;2-1.51=2
5 5

So the convergents are {0,

~ |

p— A
(b) If p=2 (mod 5), then we obtain that
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5—p X045, p—5x L2

5 +2,56=2X2+1,

2=1x2+0.
. 5 p—2
This infers that > —[O;?, 2,2]. The succes-

sive convergents are given by

0.c; =[0;2 ]_é*piz’
5
[O;ng’ZJLzl+1 :zlaloﬂ
5
and
cg:[o;%_z,z,zjz%
Hence the convergents are{ ’])5 2° 2[)13_1 ;}

(¢) If p=3 (mod 5), then one gets that

?—3+3,5:3 x1+2,

3=2X1+1,2=1X2+0.

5=pX0—+5,p=5x2

It follows that % :|:O;%3 ,1,1,2]. The succes-

sive convergents are given by

_ p 34 _ 5
07(1 I:O :I , p 3
o p3 1 5
e =L0; 55, 1] p=3 ., pt2’
— 41
5
—rp.2—3 _ 1 __10
e =L0575=,1,1] p=3, 1 2p-1
5 1+1
and
—rp.2—3 _o
=03 5 ,1,1,2] b
Thus the convergents are {0, 5 5 10

b3 pt2’2p—1

(d) I p=4 (mod 5), then we deduce that
5:pxo+5,p:5><%4+4,5:4xl+1,
4=1X4+0.

Hence % =103 p5_4, 1,4 ]. The successive con-

vergents are given by

o =0,01 = [O L 4] 17 - i

and

=[0;2 p4, 4]=

It implies that the convergents are {0, b1’
L_._ }. This completes the proof of Lemma
. 3.

2
b

[N

Finally, we present the continued fraction
expansion of —

Lemma 2.4 lLet p=7 be a prime number.

Then each of the following is true:

(a) If p=1(mod 6), then — —[O 6:|
and the convergents are {O,L ﬁ}
p—1'p
(b) If p=5 (mod 6), then ;:[O;LQS,L
5] and the convergents are {O,ﬁ /)% %}

Proof The continued fraction of ; is entire-

ly determined by the Euclidean algorithm between
6 and p.
(a) If p=1 (mod 6), then by the Euclidean

algorithm one obtains that

6=px0+6,p=6 <L +1,6=1x6+0.

6
Thus we get that ; —[O , 6] The succes-

sive convergents are given by

L _ra =14 __6
Co 07C1 I:O, 6 ] ])*] pfl’
6
=[0;2—= 6]—f
Hence the convergents are {O,L 7§}.
p—1p

(b) If p=5(mod 6), then one derives that
6=pX0+6,p=6xL=2 45,65 x1+1,
5=1X5+0.
It follows that % =[0; %5, 1,5]. The succes-

sive convergents are given by
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o= ,Ll I:O p 5] ] _ 6 , 7p/~X +q1z :O
p(:S p—> That means, if equation (2) has integral solutions
5 1 6 in the range xy<{v'2/2, then we must have D, =
C2 :[09 ’ l:l = =
6 %5 +1 pl pi —4q, =0. Since 2, #0, one gets that (j%
k
and Then the original question turns into finding g
[O 1. 5]_7 and p;. Since a €{1.2,3,5,6}, we can divide the
p proof into the following five cases.
So the convergents are {07% p% %} Thus Case 1 a =1. Then the continued fraction of
Lemma 2. 4 is proved. % is itself, i.e., — =[0; p], and the conver-
3 The proof of Theorem 1. 1 gents are {o,%}. Then gzo or ?:%. But %
k k k
According to Lazar’s result''?!, Th 1.1 .
) ceoTamng to Lazars 1.*esu eorem #0 an d b ;ﬁi :i Hence the equation (2) has
is true when a =4. So we just need to prove The- 2

orem 1. 1 for the remaining cases a € {1,2,3,5,
6}. This will be done in what follows.
In the following we let a €{1,2,3,5,6). Fix

an arbitrarily large integer 2, >0 in the range xy <<

v z/2. Then we can rewrite equation (2) as
a_ 1,11

P T Y 2
which is equivalent to the following Diophantine

b

equation
Agfﬁiz‘:i
b xy 2"

In what follows, we will try to solve above Dio-

Since xy <

V'20/2 s we derive the following inequality
a _xty 1

b xy 227 y*

By Lemma 2. 1 and (3), we can obtain that the

phantine equation with (x,y) € N%,

3

ty

) a
rational number must be one of the conver-

gents of % Assume that the continued fraction

: a . a
expansion of > is ry =[lay;ars*»a, ]. Then

there exists some integer k£ with 1<{tk<{/ such that
%} =laosas*»a; ] :%-

Since x and y are coprime, x+y and xy are also

Our fractions are reduced by deducing

The fact that such x

and y may exist relies on the solvability in N of

coprime.

that x +y=p; and xy =¢,.

the following quadratic equation

no integral solutions in the range xy << Vz2/2

when a =1. So Theorem 1. 1 is true in this case.
Case 2 a =2. Since p is a prime with p =7,

we have p=1(mod 2). By Euclidean algorithm,

one deduces that

2= px0+2, p=2xL1

+1,2=1X2+0.

2

2 p—1
It follows that ) *[O;T ,2], and the conver-
gents are {0»% %} Since é): 0 and %;é]%,

b 2 1

o -1 (p—Djz This im-

we derive that

plies that p, =1, ¢, :pgl and D, = p; —4q, =

1—2(p—1)<<0. Hence equation (2) has no inte-
gral solutions in the range xy<_v/z/2 when a =2.
Thus Theorem 1. 1 is proved in this case.

Case 3 ¢ =3. After reducing all the fractions

in Lemma 2. 2, we obtain that

» ([)7711)/3, if p=1(mod 3);

Lk

qr 1 1 e
(=273 " (prys 1 P=Emod D,

Note that the numerator of all cases is 1. There
fore p, =1 and D, =1 —4q, <0. Hence equation

(2) has no integral solutions in the range xy <<

V' z/2 in this case. So Theorem 1.1 is true when
a=3.
Case 4 a =5. By using Lemma 2. 3, after re-

duced all the fractions, we deduce that



1072 Wl K FFHRCAH RFF 0O % 57 %
1 . tions to the Erdés-Straus equation on unit fractions
—F, if p=1 d5);
(p—1D)/5 e (mod 5) [J]. J Aust Math Soc, 2013, 94: 50.
1 2 e [3] ErdosP. Az1/x) +1/x; +++++1/2, =a/b egyenlet
o , if p=2(mod 5);
D _ (p—2)/5 ' @2p+1)/5 ne m egesz szanu megoldasairol [J]. Mat Lapok, 1950,
qr 1 1 2 1. 192
, if p=3(mod 5); : )
@ 3)/5 (P+2) /5 (Zp D/5 P [4] Goral H, Sertbas D. Density and {initeness results
1 1 . _ on sums of fractions [ J]. Proc Amer Math Soc,
or , if p=4(mod 5).
RV R B DY 2019, 147 567.

It infers that the numerator of all the cases is 1 or
2. Therefore p, =1 or p, =2 and D, =1 —4q, or
D, =4—4q,. Since p, and g, are positive integers,
one derives that D, <<0. If D, <0, then it follows
immediately that the equation (2) has no integral
solutions in the range xy<<v/z/2. If D, =0, then
we must have p, =2 and ¢, =1, from which one
=1. But x =
solution of equation (2) since a<<7<{p and z=>1.

deduces that z =y y=1 cannot be a

Thus the equation (2) has no integral solutions in

the range xy<{+/z/2 when a =5. Hence Theorem
1.1 is proved in this case.
Case 5 a =6. From Lemma 2. 4, after re-

duced all the fractions, we obtain that

P _
qr
1 e
b—D/6’ if p=1(mod 6);
1 or 1 if p=5(mod 6)
(p—5/6" (ptD/e "2 :

Thus the numerator of all the cases is 1. This im-
plies that p, =1 and D, =1 —4q,. Since p, and g
are positive integers, one gets that D, <<0. Hence

the equation (2) has no integral solutions in the

range xy<+/z/2 when a =6. So Theorem 1.1 is
proved in this case. This finishes the proof of

Theorem 1. 1.
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