Nov. 2020 Vol. 57 No. 6

doi: 10. 3969/j. issn. 0490-6756. 2020. 06. 007

关于单位分数的 Lazar 问题

卢健1,李懋2,邱敏3

(1. 四川大学数学学院,成都 610064; 2. 西南大学数学与统计学院,重庆 400715; 3. 西华大学理学院,成都 610039)

摘 要: 设 n 为任意正整数. Erdös-Straus 猜想是指当 $n \ge 2$ 时,Diophantine 方程 $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ 总有正整数解 (x,y,z). 设 $p \ge 5$ 为任意素数. 最近,Lazar 证明 Diophantine 方程 $\frac{4}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ 在区域 $xy < \sqrt{z/2}$ 内没有 x 与 y 互素的正整数解 (x,y,z). 同时,Lazar 提出问题:在上述方程中以 5/p 替换 4/p,是否有类似结果?这也是 Sierpinski 提出的一个猜想. 本文证明 Diophantine 方程 $\frac{a}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ 没有满足 x,y 互素且 $xy < \sqrt{z/2}$ 的正整数解 (x,y,z),其中 a 为满足 $a < 7 \le p$ 的正整数. 这回答了上述 Lazar 问题,推广了 Lazar 的结果. 证明方法和工具主要是利用有理数 $\frac{a}{p}$ 的连分数表示.

关键词: Diophantine 方程; 连分数; 渐近分数; Erdös-Straus 猜想

中图分类号: O156.1; O156.7

文献标识码: A

文章编号: 0490-6756(2020)06-1067-06

On a problem of Lazar on unit fractions

LU Jian¹, LI Mao², QIU Min³

- (1. School of Mathematics, Sichuan University, Chengdu 610064, China;
- 2. School of Mathematics and Statistics, Southwest University, Chongqing 400715, China;
 - 3. School of Science, Xihua University, Chengdu 610039, China)

Abstract: Let n be a positive integer. The well-known Erdös-Straus conjecture asserts that the positive integral solution of the Diophantine equation $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ always exists when $n \ge 2$. Recently, Lazar investigated some properties of the solutions to the above Diophantine equation in the special case that n is a prime number. Let $p \ge 5$ be a prime number. Lazar showed that there are no triple of positive integers (x,y,z) which is solution of the Diophantine equation $\frac{4}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ in the range $xy < \sqrt{z/2}$ and (x,y)=1. Meanwhile, Lazar pointed out that it would be interesting to find an analog of this result for 5/p instead of 4/p, which is also a conjecture due to Sierpinski. In this paper, we answer Lazar's question affirmatively and also extended Lazar's result by showing that the Diophantine equation $\frac{a}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$

收稿日期: 2020-03-26

基金项目: 国家自然科学基金 (11771304)

作者简介:卢健 (1995-),男,云南文山人,硕士研究生,主要研究方向为数论. E-mail: 1797039012@qq.com

通讯作者: 邱敏. E-mail: qiumin126@126.com

 $\frac{1}{z}$ does not have any integer solution (x,y,z) such that x and y are coprime and $xy < \sqrt{z/2}$, where a is a positive integer such that $a < 7 \le p$. Our proof mainly uses the continued fraction expansion of $\frac{a}{p}$.

Keywords: Diophantine equation; Continued fraction; Convergent; Erdös-Straus conjecture (2010 MSC 11L05)

1 Introduction

The Rhind papyrus is amongst the oldest written mathematics that has come down to us, which concerns the representation of rational number as the sum of unit fractions:

$$\frac{m}{n} = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_k}$$
.

This has suggested numerous problems, many of which are unsolved, and continues to suggest new problems. One of these problems is the Erdös-Straus conjecture^[1-17], which concerns the following Diophantine equation

$$\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \tag{1}$$

Let **N** denote the set of all the positive integers. For any positive integer n, let f(n) denote the number of positive integral solutions $(x, y, z) \in \mathbb{N}^3$ to the Diophantine equation (1), that is,

$$f(n) := \# \{ (x, y, z) : \frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z},$$

$$(x, y, z) \in \mathbb{N}^3 \}.$$

Then one has

$$f(1) = 0, f(2) = 3, f(3) = 12, f(4) = 10,$$

 $f(5) = 12, \dots.$

The Erdös-Straus conjecture asserts that f(n) > 0 for all $n \ge 2$ (see, for example, [3,5]). Some related results are provided in Refs. [1,4,6-7,9-11,13].

In 2015, Elsholtz and Tao^[2] obtained a number of upper and lower bounds of f(n) or f(p) for typical values of natural number n and prime p. Recently, Lazar^[12] assumed that n is an odd prime number p and showed that $\frac{4}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ cannot have integeral solution such that x and y are coprime with $xy < \sqrt{z/2}$. At the end of Ref. [12], Lazar pointed out that it would be interest-

ing to find an analog of the main result for $\frac{a}{p}$ with a > 4 instead of $\frac{4}{p}$. So, in this paper, we present an analog of this result for the case a < 7. That is, we have the following main result of this paper.

Theorem 1.1 Let $p \ge 7$ be an arbitrary prime number and a be an integer with $1 \le a \le 6$. Then there are no triple (x, y, z) of positive integers which is a solution of the Diophantine equation

$$\frac{a}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \tag{2}$$

in the range $xy < \sqrt{z/2}$ with gcd(x,y) = 1.

Evidently, Theorem 1.1 gives an affirmative answer to Lazar's question^[12].

2 Several lemmas

For any positive integer n, let a_0 , a_1 , ..., a_n be real numbers with $a_i > 0$ for $i = 1, \dots, n$. We define the finite simple continued fraction, denoted by $[a_0; a_1, \dots, a_n]$, as follows:

$$[a_0; a_1, \dots, a_n]_{:} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots \frac{1}{a_{n-1} + \frac{1}{a_n}}}}}.$$

The k-th convergents of the continued fraction $[a_0; a_1, \dots, a_n]$ is defined by $[a_0; a_1, \dots, a_k]$, where k is a non-negative integer with $k \le n$.

Before giving the proof of Theorem 1.1, we need the following classical result of the theory of continued fraction which can be found in Ref. [8].

Lemma 2. 1^[8] Let m, n, r and s be positive integers with gcd(r, s) = 1. If

$$\left|\frac{m}{n}-\frac{r}{s}\right|<\frac{1}{2s^2},$$

then $\frac{r}{s}$ is one of the convergents of $\frac{m}{n}$.

In the rest of this paper, we always let $p \ge 7$ be a prime number. The following results are about the continued fraction expansions of $\frac{3}{p}$, $\frac{5}{p}$ and $\frac{6}{p}$.

Lemma 2.2 Let $p \ge 7$ be a prime number. Then each of the following is true:

(a) If
$$p \equiv 1 \pmod{3}$$
, then $\frac{3}{p} = [0, \frac{p-1}{3}, 3]$

and the convergents are $\{0, \frac{3}{p-1}, \frac{3}{p}\}$;

(b) If
$$p \equiv 2 \pmod{3}$$
, then $\frac{3}{p} = [0; \frac{p-2}{3}, 1,$

2] and the convergents are $\{0, \frac{3}{p-2}, \frac{3}{p+1}, \frac{3}{p}\}$.

Proof The continued fraction of $\frac{3}{p}$ is entirely determined by the Euclidean algorithm between 3 and p.

(a) Let $p \equiv 1 \pmod{3}$. Then by the Euclidean algorithm, we obtain that

$$3 = p \times 0 + 3$$
, $p = 3 \times \frac{p-1}{3} + 1$, $3 = 1 \times 3 + 0$.

Thus $\frac{3}{p} = [0; \frac{p-1}{3}, 3]$. The successive convergents are given by

$$c_0 = 0, c_1 = [0; \frac{p-1}{3}] = \frac{1}{p-1} = \frac{3}{p-1},$$

$$c_2 = [0; \frac{p-1}{3}, 3] = \frac{3}{p}.$$

So the convergents are $\{0, \frac{3}{p-1}, \frac{3}{p}\}$.

(b) Let $p \equiv 2 \pmod{3}$. Then we deduce that $3 = p \times 0 + 3$, $p = 3 \times \frac{p-2}{3} + 2$, $3 = 2 \times 1 + 1$, $2 = 1 \times 2 + 0$.

It follows that $\frac{3}{p} = [0; \frac{p-2}{3}, 1, 2]$. The successive convergents are given by

$$c_0 = 0$$
, $c_1 = [0; \frac{p-2}{3}] = \frac{1}{p-2} = \frac{3}{p-2}$,

$$c_2 = [0, \frac{p-2}{3}, 1] = \frac{1}{\frac{p-2}{3} + 1} = \frac{3}{p+1}$$

and

$$c_3 = [0; \frac{p-2}{3}, 1, 2] = \frac{3}{p}.$$

So the convergents are $\{0, \frac{3}{p-2}, \frac{3}{p+1}, \frac{3}{p}\}$ as expected. This completes the proof of Lemma 2. 2.

Similarly, we can get the continued fraction expansion of $\frac{5}{p}$ as follows.

Lemma 2.3 Let $p \ge 7$ be a prime number. Then each of the following is true:

(a) If $p \equiv 1 \pmod{5}$, then $\frac{5}{p} = [0; \frac{p-1}{5}, 5]$

and the convergents are $\{0, \frac{5}{p-1}, \frac{5}{p}\}$;

(b) If $p \equiv 2 \pmod{5}$, then $\frac{5}{p} = [0; \frac{p-2}{5}, 2, \frac{p}{5}]$

2] and the convergents are $\{0, \frac{5}{p-2}, \frac{10}{2p+1}, \frac{5}{p}\}$;

(c) If $p \equiv 3 \pmod{5}$, then $\frac{5}{p} = [0; \frac{p-3}{5}, 1, 1, \frac{p-3}{5}, \frac{p-3}{$

2] and the convergents are $\{0, \frac{5}{p-3}, \frac{5}{p+2}, \frac{5}{p+2},$

 $\frac{10}{2p-1},\frac{5}{p}\};$

(d) If $p \equiv 4 \pmod{5}$, then $\frac{5}{p} = [0; \frac{p-4}{5}, 1,$

4] and the convergents are $\{0, \frac{5}{p-4}, \frac{5}{p+1}, \frac{5}{p}\}$.

Proof The continued fraction of $\frac{5}{p}$ is entirely determined by the Euclidean algorithm between 5 and p.

(a) If $p \equiv 1 \pmod{5}$, then the Euclidean algorithm give us that

$$5 = p \times 0 + 5$$
, $p = 5 \times \frac{p-1}{5} + 1$, $5 = 1 \times 5 + 0$.

Hence one derives that $\frac{5}{p} = [0; \frac{p-1}{5}, 5]$. The successive convergents are given by

$$c_0 = 0, c_1 = [0, \frac{p-1}{5}] = \frac{1}{p-1} = \frac{5}{p-1},$$

$$c_2 = [0; \frac{p-1}{5}, 5] = \frac{5}{p}.$$

So the convergents are $\{0, \frac{5}{p-1}, \frac{5}{p}\}$.

(b) If $p \equiv 2 \pmod{5}$, then we obtain that

$$5 = p \times 0 + 5, p = 5 \times \frac{p-2}{5} + 2, 5 = 2 \times 2 + 1,$$

 $2 = 1 \times 2 + 0.$

This infers that $\frac{5}{p} = [0, \frac{p-2}{5}, 2, 2]$. The successive convergents are given by

$$c_0 = 0, c_1 = [0, \frac{p-2}{5}] = \frac{1}{p-2} = \frac{5}{p-2},$$

$$c_2 = [0; \frac{p-2}{5}, 2] = \frac{1}{\frac{p-2}{5} + \frac{1}{2}} = \frac{10}{2p+1}$$

and

$$c_3 = [0; \frac{p-2}{5}, 2, 2] = \frac{5}{p}.$$

Hence the convergents are $\{0, \frac{5}{p-2}, \frac{10}{2p+1}, \frac{5}{p}\}$.

(c) If $p \equiv 3 \pmod{5}$, then one gets that

$$5 = p \times 0 + 5, p = 5 \times \frac{p-3}{5} + 3, 5 = 3 \times 1 + 2,$$

$$3 = 2 \times 1 + 1, 2 = 1 \times 2 + 0.$$

It follows that $\frac{5}{p} = [0, \frac{p-3}{5}, 1, 1, 2]$. The successive convergents are given by

$$c_0 = 0, c_1 = [0, \frac{p-3}{5}] = \frac{1}{\frac{p-3}{5}} = \frac{5}{p-3},$$

$$c_2 = [0; \frac{p-3}{5}, 1] = \frac{1}{p-3+1} = \frac{5}{p+2},$$

$$c_3 = [0; \frac{p-3}{5}, 1, 1] = \frac{1}{\frac{p-3}{5} + \frac{1}{1+1}} = \frac{10}{2p-1}$$

and

$$c_4 = [0; \frac{p-3}{5}, 1, 1, 2] = \frac{5}{p}.$$

Thus the convergents are $\{0, \frac{5}{p-3}, \frac{5}{p+2}, \frac{10}{2p-1}, \frac{10}{p-1}, \frac{10}{p-1},$

 $\frac{5}{p}$ \}.

(d) If $p \equiv 4 \pmod{5}$, then we deduce that $5 = p \times 0 + 5$, $p = 5 \times \frac{p-4}{5} + 4$, $5 = 4 \times 1 + 1$,

$$4 = 1 \times 4 + 0$$
.

Hence $\frac{5}{p} = [0; \frac{p-4}{5}, 1, 4]$. The successive convergents are given by

$$c_0 = 0, c_1 = [0, \frac{p-4}{5}] = \frac{1}{\frac{p-4}{5}} = \frac{5}{p-4},$$

$$c_2 = [0, \frac{p-4}{5}, 1] = \frac{1}{\frac{p-4}{5} + 1} = \frac{5}{p+1}$$

and

$$c_3 = [0; \frac{p-4}{5}, 1, 4] = \frac{5}{p}.$$

It implies that the convergents are $\{0, \frac{5}{p-4}, \frac{5}{p+1}, \frac{5}{p}\}$. This completes the proof of Lemma 2.3.

Finally, we present the continued fraction expansion of $\frac{6}{p}$.

Lemma 2.4 Let $p \ge 7$ be a prime number. Then each of the following is true:

(a) If $p \equiv 1 \pmod{6}$, then $\frac{6}{p} = [0, \frac{p-1}{6}, 6]$

and the convergents are $\{0, \frac{6}{p-1}, \frac{6}{p}\}$;

(b) If $p \equiv 5 \pmod{6}$, then $\frac{6}{p} = [0; \frac{p-5}{6}, 1, \frac{p-5}{6}]$

5] and the convergents are $\{0, \frac{6}{p-5}, \frac{6}{p+1}, \frac{6}{p}\}$.

Proof The continued fraction of $\frac{6}{p}$ is entirely determined by the Euclidean algorithm between 6 and p.

(a) If $p \equiv 1 \pmod{6}$, then by the Euclidean algorithm one obtains that

$$6 = p \times 0 + 6, p = 6 \times \frac{p-1}{6} + 1, 6 = 1 \times 6 + 0.$$

Thus we get that $\frac{6}{p} = [0; \frac{p-1}{6}, 6]$. The successive convergents are given by

$$c_0 = 0, c_1 = [0; \frac{p-1}{6}] = \frac{1}{\frac{p-1}{6}} = \frac{6}{p-1},$$

$$c_2 = [0; \frac{p-1}{6}, 6] = \frac{6}{p}.$$

Hence the convergents are $\{0, \frac{6}{p-1}, \frac{6}{p}\}$.

(b) If $p \equiv 5 \pmod{6}$, then one derives that $6 = p \times 0 + 6$, $p = 6 \times \frac{p-5}{6} + 5$, $6 = 5 \times 1 + 1$, $5 = 1 \times 5 + 0$.

It follows that $\frac{6}{p} = [0; \frac{p-5}{6}, 1, 5]$. The successive convergents are given by

$$c_0 = 0, c_1 = [0; \frac{p-5}{6}] = \frac{1}{\frac{p-5}{6}} = \frac{6}{p-5},$$

$$c_2 = [0, \frac{p-5}{6}, 1] = \frac{1}{p-5} = \frac{6}{p+1}$$

and

$$c_3 = [0; \frac{p-5}{6}, 1, 5] = \frac{6}{p}.$$

So the convergents are $\{0, \frac{6}{p-5}, \frac{6}{p+1}, \frac{6}{p}\}$. Thus Lemma 2.4 is proved.

3 The proof of Theorem 1.1

According to Lazar's result^[12], Theorem 1.1 is true when a=4. So we just need to prove Theorem 1.1 for the remaining cases $a \in \{1,2,3,5,6\}$. This will be done in what follows.

In the following we let $a \in \{1,2,3,5,6\}$. Fix an arbitrarily large integer $z_0 > 0$ in the range $xy < \sqrt{z/2}$. Then we can rewrite equation (2) as

$$\frac{a}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z_0}$$

which is equivalent to the following Diophantine equation

$$\left| \frac{a}{p} - \frac{x+y}{xy} \right| = \frac{1}{z_0}.$$

In what follows, we will try to solve above Diophantine equation with $(x, y) \in \mathbb{N}^2$. Since $xy < \sqrt{z_0/2}$, we derive the following inequality

$$\left| \frac{a}{p} - \frac{x+y}{xy} \right| < \frac{1}{2x^2 y^2} \tag{3}$$

By Lemma 2. 1 and (3), we can obtain that the rational number $\frac{x+y}{xy}$ must be one of the conver-

gents of $\frac{a}{p}$. Assume that the continued fraction

expansion of $\frac{a}{p}$ is $\frac{a}{p} = [a_0; a_1, \dots, a_l]$. Then there exists some integer k with $1 \le k \le l$ such that

$$\frac{x+y}{xy} = [a_0; a_1, \dots, a_k] = \frac{p_k}{q_k}.$$

Since x and y are coprime, x+y and xy are also coprime. Our fractions are reduced by deducing that $x+y=p_k$ and $xy=q_k$. The fact that such x and y may exist relies on the solvability in \mathbf{N} of the following quadratic equation

$$X^2 - p_b X + q_b = 0$$
.

That means, if equation (2) has integral solutions in the range $xy < \sqrt{z/2}$, then we must have $D_k = p_k^2 - 4q_k \ge 0$. Since $z_0 \ne 0$, one gets that $\frac{p_k}{q_k} \ne \frac{a}{p}$. Then the original question turns into finding q_k and p_k . Since $a \in \{1,2,3,5,6\}$, we can divide the proof into the following five cases.

Case 1 a=1. Then the continued fraction of $\frac{1}{p}$ is itself, i. e., $\frac{1}{p}=[0;p]$, and the convergents are $\{0,\frac{1}{p}\}$. Then $\frac{p_k}{q_k}=0$ or $\frac{p_k}{q_k}=\frac{1}{p}$. But $\frac{p_k}{q_k}\neq 0$ and $\frac{p_k}{q_k}\neq \frac{a}{p}=\frac{1}{p}$. Hence the equation (2) has no integral solutions in the range $xy<\sqrt{z/2}$ when a=1. So Theorem 1.1 is true in this case.

Case 2 a = 2. Since p is a prime with $p \ge 7$, we have $p \equiv 1 \pmod{2}$. By Euclidean algorithm, one deduces that

$$2 = p \times 0 + 2$$
, $p = 2 \times \frac{p-1}{2} + 1$, $2 = 1 \times 2 + 0$.

It follows that $\frac{2}{p} = [0; \frac{p-1}{2}, 2]$, and the convergents are $\{0, \frac{2}{p-1}, \frac{2}{p}\}$. Since $\frac{p_k}{q_k} \neq 0$ and $\frac{p_k}{q_k} \neq \frac{a}{p}$, we derive that $\frac{p_k}{q_k} = \frac{2}{p-1} = \frac{1}{(p-1)/2}$. This implies that $p_k = 1$, $q_k = \frac{p-1}{2}$ and $D_k = p_k^2 - 4q_k = 1 - 2(p-1) < 0$. Hence equation (2) has no integral solutions in the range $xy < \sqrt{z/2}$ when a = 2. Thus Theorem 1. 1 is proved in this case.

Case 3 a = 3. After reducing all the fractions in Lemma 2.2, we obtain that

$$\frac{p_k}{q_k} = \begin{cases} \frac{1}{(p-1)/3}, & \text{if } p \equiv 1 \pmod{3}; \\ \frac{1}{(p-2)/3} & \text{or } \frac{1}{(p+1)/3}, & \text{if } p \equiv 2 \pmod{3}. \end{cases}$$

Note that the numerator of all cases is 1. Therefore $p_k = 1$ and $D_k = 1 - 4q_k < 0$. Hence equation (2) has no integral solutions in the range $xy < \sqrt{z/2}$ in this case. So Theorem 1. 1 is true when a = 3.

Case 4 a = 5. By using Lemma 2.3, after reduced all the fractions, we deduce that

$$\frac{p_k}{q_k} = \begin{cases}
\frac{1}{(p-1)/5}, & \text{if } p \equiv 1 \pmod{5}; \\
\frac{1}{(p-2)/5} & \text{or } \frac{2}{(2p+1)/5}, & \text{if } p \equiv 2 \pmod{5}; \\
\frac{1}{(p-3)/5} & \text{or } \frac{1}{(p+2)/5} & \text{or } \frac{2}{(2p-1)/5}, & \text{if } p \equiv 3 \pmod{5}; \\
\frac{1}{(p-4)/5} & \text{or } \frac{1}{(p+1)/5}, & \text{if } p \equiv 4 \pmod{5}.
\end{cases}$$

It infers that the numerator of all the cases is 1 or 2. Therefore $p_k = 1$ or $p_k = 2$ and $D_k = 1 - 4q_k$ or $D_k = 4 - 4q_k$. Since p_k and q_k are positive integers, one derives that $D_k \le 0$. If $D_k < 0$, then it follows immediately that the equation (2) has no integral solutions in the range $xy < \sqrt{z/2}$. If $D_k = 0$, then we must have $p_k = 2$ and $q_k = 1$, from which one deduces that x = y = 1. But x = y = 1 cannot be a solution of equation (2) since $a < 7 \le p$ and $z \ge 1$. Thus the equation (2) has no integral solutions in the range $xy < \sqrt{z/2}$ when a = 5. Hence Theorem 1. 1 is proved in this case.

Case 5 a=6. From Lemma 2. 4, after reduced all the fractions, we obtain that

$$\frac{p_k}{q_k} = \begin{cases}
\frac{1}{(p-1)/6}, & \text{if } p \equiv 1 \pmod{6}; \\
\frac{1}{(p-5)/6} & \text{or } \frac{1}{(p+1)/6}, & \text{if } p \equiv 5 \pmod{6}.
\end{cases}$$

Thus the numerator of all the cases is 1. This implies that $p_k = 1$ and $D_k = 1 - 4q_k$. Since p_k and q_k are positive integers, one gets that $D_k < 0$. Hence the equation (2) has no integral solutions in the range $xy < \sqrt{z/2}$ when a = 6. So Theorem 1.1 is proved in this case. This finishes the proof of Theorem 1.1.

References:

- [1] Bai T T. On $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}$ and some of its generalizations [J]. J Inequal Appl, 2018, 197: 1.
- [2] Elsholtz C, Tao T. Counting the number of solu-

- tions to the Erdös-Straus equation on unit fractions [J]. J Aust Math Soc, 2013, 94: 50.
- [3] Erdös P. Az $1/x_1 + 1/x_2 + \cdots + 1/x_n = a/b$ egyenlet egesz szanu megoldasairol [J]. Mat Lapok, 1950, 1: 192.
 - Göral H, Sertbas D. Density and finiteness results on sums of fractions [J]. Proc Amer Math Soc, 2019, 147: 567.
- [5] Guy R. Unsolved problems in number theory [M]. New York: Springer-Verlag, 1994.
- [6] Hu S N, Hong S F, Zhao W. The number of rational points of a family of hypersurfaces over finite fields [J]. J Number Theory, 2015, 156: 135.
- [7] Jia C H. The estimate for mean values on prime numbers relative to $\frac{4}{p} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$ [J]. Sci China Math, 2012, 55: 465.
- [8] Khinchin A Y. Continued fractions [M]. New York: Dover, 1997.
- [9] Ko C, Sun Q, Chang S J. On equations 4/n=1/x+1/y+1/z [J]. Acta Sci Natur Szechuanensis, 1964, 2: 21.
- [10] Lapkova K. Explicit upper bound for an average number of divisors of quadratic polynomials [J]. Arch Math, 2016, 106: 247.
- [11] Lapkova K. On the average number of divisors of reducible quadratic polynomials [J]. J Number Theory, 2017, 180: 710.
- [12] Lazar Y. A remark on a conjecture of Erdös and Straus [EB/OL]. arXiv: 2003. 01237.
- [13] Li D L. On the equation 4/n = 1/x + 1/y + 1/z [J]. J Number Theory, 1981, 13: 485.
- [14] Luca F, Pappalardi F. On ternary Egyptian fractions with prime denominator [J]. Res Number theory, 2019, 5: Art34.
- [15] Subburam S, Togbé A. A note on the Erdös Straus conjecture [J]. Period MathHungar, 2016, 72: 43.
- [16] Webb W A. On 4/n = 1/x + 1/y + 1/z [J]. Proc Amer Math Soc, 1970, 25: 578.
- [17] Zhao J Y, Hong S F, Zhu C X. The number of rational points of certain quartic diagonal hypersurfaces over finite fields [J]. AIMS Math, 2020, 5: 2710.

引用本文格式:

中 文: 卢健, 李懋, 邱敏. 关于单位分数的 Lazar 问题[J]. 四川大学学报: 自然科学版, 2020, 57: 1067.

英文: Lu J, Li M, Qiu M. On a problem of Lazar on unit fractions [J]. J Sichuan Univ: Nat Sci Ed, 2020, 57: 1067.