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Abstract: In this paper, we give certain sufficient conditions for the existence of periodic solutions to the

following prescribed mean curvature Rayleigh equations with a deviating argument
u' ()
V14 G’

By using Mawhin’s continuation theorem, we prove that the given equation has at least one T~ periodic

Y4 fau (D)) + gCule — (1)) = po).

solution. At last, we give an example to illustrate the application of our main results.
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. whereg.z,p € C(R,R) are T+ periodic, f € C(RX
1 Introduction . . o .
R,R) is a T- periodic function in the first argu-

Considering the following prescribed mean

curvature Rayleigh equations with a deviating ar-

gument
(O Gl (D) +
V14 Gl (@)
gu(t — (1)) = p(v) (D
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ment and T > 0 is a given constant. In recent
years, there are so many results about the exist-
ence of periodic solutions for the Rayleigh equa-

[91y . For example, in Ref. [3], Lu and

tions(see
Ge studied the periodic solutions of the following

Rayleigh equation with a deviating argument:
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@+ @) +gla — () = p(o),
and in Ref. [8], Lu and Gui discussed the exist-
ence of periodic solutions to p-Laplacian Rayleigh
differential equation with a delay of the form:

(@, ("N + f' (D)) +

glx(t — (1)) = e(1).
Nowadays, the
( u' ()
V14 Gl )

appears in different geometry and physics

prescribed mean curvature

)" of a function u(¢) frequently

[10-12] , SO
it is interesting and worthwhile to consider the
existence of periodic solutions of prescribed mean
curvature equations. In Ref. [137], Feng discussed
the periodic solution for the prescribed mean cur-
vature Lie'nard equation of the form
( u' (1)
V14+ G @)

gt,ult — (1)) = e(t),
147

Y+ fFu)u () +

and Liang and Lu""" studied the homoclinic solu-
tion for the prescribed mean curvature Duffing-
type equation of the form
u' (1)
V14 G )

However, to best of our knowledge, the

) tcu (&) + fu() = po).

studies of prescribed mean curvature Rayleigh e-
quation is relatively infrequent, and the method
of finding a priori bounds for Rayleigh equations
is different from Liénard equations and Duffing-
type equations, so it’s worthy to study the Eq.
(D).

The rest of this paper organized as follows.
In Section 2, we shall state some necessary defini-
tions and lemmas. In Section 3, we shall prove

the main result.

2  Preliminary

In order to use Mawhin’s continuation theo-
rem, we first recall it.

Let X and Y be two Banach space, a linear
operatorL : D(L) C X —Y is said to be a Fredholm
operator of index zero provided that

(a) ImL is a closed subset of Y;

(b) dimKerL = codimIml < oo,

LetN:Q C X — Y be a continuous operator,

Nis said to be L-compact and continuous in ()
provided that

() K,(I —Q)N(Q) is a relative compact set
of X,

(d) QN (Q) is a bounded set of Y, where we
denote X; = KerL,Y, = ImL, then we have the
decomposition X = X; @ X,,Y =Y, ®Y,, let P;
X —> X,.Q:Y—Y, are continuous linear projectors
(meaning P? = Pand Q* = Q), and

Kp =1L ‘Kw'PﬂD(L)-

Let X and Y be two Banach
spaces andis an open and bounded set of X, and
let L:D(L) © X - Y be a Fredholm operator of
index zero and letN:Q C X —Y be-compact on Q.

Lemma 2. 1

In addition, if the following conditions hold:
(hy) Lx # ANz, V¥ (x,1) € 9Q X (0,1);
(hy) QNx # 0,V x € KerL N 9Q;

(h;) deg(JQN .Q N KerlL,0) # 0,

where J :ImQ— KerLis just any homeomorphism,

then Lxr = Nx has at least one solution in D(L)

Q.

Lemma 2.2 Suppose that x(¢) € C' ([0,

T1]), and x(0) = x(T). Then
T T (T ,

J |20 |? dr <—2J |2/ |7 de
0 7T 0
Lemma 2.3"%  Lets € C(R,R) withs(z+T)
= s(t) and s(¢) € [0,T],VY¢ € R. Suppose p €
(1, + o), = max | s(¢) | andu € C'(R,R) with

te[0,T]

u(t +T) = u(t). Then

T
J | u(t) —ule —s()) |7dt <

0
T
a/’j | o () |*de.
0

In order to use Lemma 2. 1, Let’s consider
the problem
v(t)
V(@) =— fd (D) — glult — () + p(D)
(2)
Obviously, if (u(),v(t))T is a solution of (2),

u' (1) = elu(D) =

then u(z) is a solution of (1).
Let
X =Y ={z:2() = (w(@®), vt)H" €
C'(R, R ,z(1) = 2(t + T},

where the normal ||z | = max{ [« o, lvlo}, and



%14 LA, % . Rayleigh & o i -7 3% v 5 o7 £2 )5 3 21
lwlo = max | w(t) |, QN (Q) is a bounded set of Y, so the operator N
te[0,T] —
lolle = max] | o) |. is L~ compact in (.
1€[0.T

It is obviously that X and Y are Banach space.
Now we define the operator

L:D(L) CX—>Y,Lz =2 = /()" ()",
where

D(L) =

{2 ] 2= (u@®,v@®)" € C"(R.,R*),

(1) =zt +1)j.
Let

X, ={z]z=

(@), o)™ € C"(R,R X (—1,1)),

() = =2 + 1}
Define a nonlinear operatorN:Q € (X N X,) € X
— Yas follows:

v(2) ) ’ v(2) y —

glu(t —z())) + p)T,

where QC X, © Xand Q is an open and bounded

Nz = ( — fl

set. Then problem (2) can be written as Ly = Nz
in Q. We know

KerlL = {z |z € X,z = (), /()T =
0,007},
then V¢ € R, we have ' (z) = 0,7 () = 0. Obvi-
ously u € R,v € R, thus KerL= R*, and it is

T
also easy to prove that ImL = {y € Y,J y(s)ds =
0

0 }. Therefore, L is a Fredholm operator of index

zero.

Let

.
P.X —> KerL,Pr — lJ <(s)ds,
Tl

T
Q:Y - ImQ.Qy = %JO y(s)ds.

— 1
K/) - L ‘erl‘ﬂl)(l‘)'

Then it is easy to see that
T
(K,y) () :J G, (t,s)y(s)ds,
0

where
s— T

,0

N

=S,
Gk(t) =
%,s <t <T.

For all Q such that QC( X, N X) < X, we have
K, (I — QYN(Q) is a relative compact set of X,

For the sake of convenience, we list the fol-
lowing assumptions which will be used by us in
studying the existence of periodic solutions to the
(1) in Section 3.

[ H, ]There exists a constant d such that

2(g(x) —p(t)) <0, for | x| >dandt € R,

[H,] Ve R,xf(t,a) <0 (oraf(t,a) =0).
And there exists » >, > 0 and 2 > 0 suchthat

rnlal—h<| ) |<r | x]+h,

Y (t,x) € R%,

[H,] g(0) = 0and there exists a constant
[such that

| gCx) —glax) | <l )y —22 | s V21,22 €R.
Throughout this paper, we define

- 1
A: :(J | p(O |7dt )7 + sup | p(&) | <+ o=,
0 te[0,T]

3 Main results

Theorem 3.1 Assume that conditions [ H; ]

~[H, ] hold, »;, > oland
(nn + 7 +IT) (A VT +Th) + 7dT(ry —al)

Tf(rl 7&1)

<1,
then (1) has at least one T- periodic solution.
Proof LetQ, = {z € Q.Lz =Nz, € (0,
D). Iz € Q). we have
v (1)
V(1) == Af (ts2p(v())) — g (ult —
(D)) +ap (D)
Integrating the first equation of (3) from 0 to T,

W (1) = Ap(v()) =2
(3)

we have
T
[P0 —o 4
o /1 —2* ()

Thus, there existz .z, € [0,T] such that

v(t;) =0, v(s,) <O0.
Let t; and ¢, be, respectively, the maximum and
minimum points of v(¢). Then

(L) =0, 0 (t;) =0 (5)
and

v(t,) <0,9 () =0 (6)

It follows from the second equation of (3) that
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'U(l";)

J1 - ()

0 = 'U/(f;;) :7Af(l9/1 ) -

Ag Culty —7(23))) +2Ap (23).
Combining (5) and [ H, ], we can obtain
gCulty —z(t;))) — p(t;) =0 7
In a similar way, we also have
gCult, — () —p,) <0 &

In view of [H, ], (7) and (8), we can get

ulty —w(13)) <d
and

ult, — (1)) >—d.
Since u(¢t —7(2)) is a continuous function on R, it
follows that there must exist a constant & € R
such that

| ue — (&) | <d.
Note that there exist an integer m and & € [0, T ]
such that & — (& = mT + & Then we have

| u(t) | =] u(® +Jiu/(s)ds | <

+J W/ () | ds ot € [E.2+ T,

and
| ult) [ =] uCz —T) | =
- & ¢
@ = Wodsl=d+ [ 1l ds
=T T
It follows from the above two inequalities that
lullo = max | u() | = max |u(®) | <
t€[0.7] 1€ [6:5+T]

t

max [dJr—(J | ' Cs) | ds +
te[6,6+T]

f () [ ds)] <d +%«/T AP
t—T
)

Furthermore, by Lemma 2. 2, we have

la s 7<J (o) [7dnt =
<JO | uCt +8 |2de)7 =

<JT L u(t +8 —u® +u® |"d)? <

<J | u(t+8 —u® +d |7dD <
[J:<| w(t +8 —u® | +d*de]7 <

<J:<| wlt +8 —u® A7 +

T 1
<J Ldot

0

%Hu . +d /T (10)

Multiplying the second equation of (3) by u’ ()

and integrating on the interval [0,T], we have

J e u (t)

T
/\j gCu(t — () u (DHde + 2 J gCu(t —
0 0

u (Ddt —

T
0 :J Ol DOdt =

T
(O () de +AJ PO (Hdr =
0

J e u (t)

(1)) — g(u(z‘))]u/(z‘)dz‘ —

T
) W () de —AJ [oCu(t —
0

T T
AJ gCu()d (Ddt HJ ' (Dt
0 0
It follows from [ H,],[ H; Jand Lemma 2. 3 that
T T
rlj | o' (o) |* de <J | gCuCt —7z(t))) —
0 0
gCu() |+ ') | dt +
J | p(O |- o | de +
0
T
j hlel o/ | dt <
0
zJ | ult — () —u( || (O | dt +
j oo -] o () | dt+}zJ () | dt <
1<J | u(t — () —
W) |2de )+ <J | W/ [2de ) +
(J | p(o) |2dt ﬁ(J | &/ () |2de )T +
hf(J () |2 dot <
alJ W/ |2 de +

(A +hf>(J W (O |2 ot
Since r; > ol , thus

r _Otl

which together with (9) and (10) leads to
lullo <d+LAYT +Th

I 1. <

2 r —al PO (12)
and
HuH?\AT(*TZf)hﬂzf 13)
' T

Multiplying the second equation of (3) by
v’ (¢) and integrating on the interval [0, T, in
view of [H, ],[ H; Jand Lemma 2. 3,then we have
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) o () de —

J |/ |2 de :—AJ f(n“i”

T
AJ gu(t —())) J(Odt +AJ PO W (DOdr <
0 0

AJ |f<z,”§”> o] o/ | de +
i
J | gCuCt —())) —gu()) | o (&) | dt +
T /
j | gCu() |«| o' () | de +
0
J | p(0) o] o' () | dt <
0
T , , T
rzf ROIBELON dr+hf S | de+
0 0
zJ | u(t — () —u() |+] o) | de +
0

zJ | u(o) || o) | de +
0

T
J [ p |+ | dt <

molld e 1o e +h /T |0 Il +
Al N2 l0" e +0lullzllo 2+

Al Iz,
which yields
o' e < Gy +ad) ' I2+ 1wz +
h /T +A.
From (11) and (13), we obtain
o 1. <
(nr +mr, ITYA +hVT) + ndl VT (ry —al)
nG —al)

(14)
It follows from (4) that there exists £ € [0,T]
such that v(¢) = 0. It implies that

t T
o) | =] o(p) +J o (9)ds \gj |9 | ds.
¢ 0
Thus
< VT IIJ |,

Combining with (14), we can have

oo

lvlo <
(ar, + 7 HITYA VT +hT) + =dl T (r, —aw
T[(rl —al)
= p.

It follows from

(ar + 7y HIT)A VT +hT) + 2dl Ty —al)
G —al)

<1
that

lolo: =p <1 15
LetQ, = {2z € KerL:Nz € ImL}. lfz € Q,,

then 2 € KerLL and QNz = 0. Obviously,
luo) [ <oy v(0) =0 < p.

Set
Q={z= (" e X

lullo <
o+ ol < 102 <1,

Then the condition (h;) and (h,) of Lemma 2. 1
are satisfied. In order to verify the condition (h;)
of Lemma 2.1, we define J :ImQ — KerLis a line-
ar isomorphism J (u,v) = (v,u)T, and define
H(z,p) = pz + (1 — ) JQN=z,
YV (zop) € Q x[0,1].
It follows from [ H, ] that 2" H(z,p) #0, VY (2,p)
€ 3(Q N KerL) x[0,1], then
deg(JQN .Q N KerL,0) =
deg(H(2,0),0 N Kerl,0) =
deg(H(z,1),Q N KerL,0) # 0,
which implies that the condition (h;) of Lemma
2.1 is also satisfied. Therefore, Eq. (1) has at
least one T- periodic solution.

As applications, we list the following equa-

tion;
Example 3.2 Consider the following equa-
tion:
S 4O N G PR
NAENCAOI
glat —z(1))) = p(») (16>
The Eq. (16) has has at least one IT[ -periodic so-
lution.
Proof Corresponding to Theorem 3. 1 and

(1), we have

' (D) = (2 +%sin8t>x’<z),

glx (1)) 61~

p() = %sm&‘andr(z‘) = sin8t.

1
Then we have T = 4,1'1 =1, :3,l:aya:
max | sin8¢ | = 1.
1€[0.7]

It is easy to see that r; > o/. Furthermore,



24

Wl X ¥ FROARHF RO

%55 %

A = (F L ogings [2de )t +

o 256
1 . 1
sup | ===sin8t | < —.
S 256 128

If we choosed = L and h = L, then

<

4 256
(e, + 7y, HITYA VT +hT) + 7dlT(ry —dl)
G —al)
R SO O
(mt3m 4500 28 .1 1 = _,
64 4

1

Therefore the conditions [ H; ]~[ H; ] of Theorem
3.1 are satisfied. It follows that (16) has at least

T L .
one = -periodic solution.
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