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Abstract: For a system of general nonconvex variational inequalities defined on uniformly prox-regular sets, we propose a
parallel projection algorithm which converges to its solution and common fixed points of two Lipschitzian mappings. We
further consider the convergence of the algorithm under some suitable conditions. Results presented in this article improve
and extend the previously known results for the variational inequalities and related optimization problems.
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1 Introduction

Variational inequality theory was introduced by Stampacchia™ in the early 1960s, which is an important
branch of applicable mathematical and with a widerange of applications in nonlinear optimization theory, differ-
ential equation, control problem, equilibrium theory. One of the basic problem in variational inequalities is the
existence of solutions problem and the research of the iterative method for its solutions. There are a lot of
methods can used to solving variational inequalities, such as projection method and its variant forms, Wiener-
Hopf equations, auxiliary principle and so on, see [1-13] and the references therein.

In recent years, researchers had a keen interest in uniformly prox-regular sets and the nonconvex varia-
tional inequalities problems NCVIP, which is defined uniformly prox-regular sets™*. As known to all that u-
niformly prox-regular sets are nonconvex sets and include convex sets as special case. Noor'" first introduced
and research a class of NCVIP. Moreover, he proved the equivalence between the NCVIP and the fixed-point
problems by using the projection technique. This equivalent formulation is often used to discuss the existence
and algorithm of the solution of the NCVIP. Noor" also proposed some other methods for solving a general
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NCVIP, such as projection methods and Wiener-Hopf equations technique. On the other hand, Verma'®
Noor™ proposed explicit projection methods for solving systems of variational inequalities and general varia-
tional inequalities on a closed convex subset of Hilbert space, respectively. Recently, many researchers began
to consider variational inequalities system problems; see [ 8-107] and the references therein. In 2012, Wen et
al. ' generalized the nonconvex variational inequalities to a new system nonconvex variational inequalities and

discussed the convergence of projection methods for the new system of general nonconvex variational inequali-
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ties.

In this article, we introduce and consider a new and more general system of general nonconvex, variational
inequalities problems SGNCVIP. The GNCVIP includes the system of variational inequalities involving two dif-
ferent nonlinear operators, the general nonconvex variational inequalities and the systems of variational ine-
qualities defined on closed convex sets as special cases. In this paper, we first show that projection technique
can be extended to the new system of general nonconvex variational inequalities on uniformly prox-regular sets,
and then propose a new parallel algorithm which converges to its solution. Unlike the algorithm 3.1 in [10],
an important feature of the new parallel algorithm is that it has the suitability for implementing on multipro-
cessor computer. We also consider the convergence of the parallel projection algorithm under some suitable
mild conditions. The results presented in this article improve and extend the previously known results for the

variational inequalities and related optimization problems.

2 Preliminaries

In this section, we present some basic definitions and preliminary results that will be used throughout the
paper. The Hilbert space is denoted by H and we use ( * , * > and || ¢ | denote the inner productand norm of
H ., respectively. The nonempty closed convex subset of H is denoted by K. The identity operator is denoted
by I.

Definition 1°°*)  The proximal normal cone of K at « &€ H is given by

NE(w) . ={EEH . u€P,(utad}, [@D)
where a0 is a constant and Px (w)={u" € K:dx (W)= || u—u"

s deCo=inf lo—ull.
vE K
The proximal normal cone N§ («) has the following characterization.

Lemma 1% Let K be a nonempty closed convex subset in H. Then é€ N% (u) if and only if 3 «>>0 such

that
(Evv—w=<alv—ul? VvEK. )
Definition 2°°*)  The Clarke normal cone, denoted by N% («) , is defined as
N& () =co(Ni (w)), (D)

where co(A) is the closure of the convex hull of the set A.
Definition 3°**)  For r€ (0,00, K, CK is said to be normalized uniformly r-prox-regular if and only if
Yu€K,, 075£€ Nk (u), we have

5
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Remark 1 From [2-3] we know, if r=9o0, then K,=K.
Let K, be a uniformly r-prox-regular (nonconvex) set, T,,T;:K, XK,—K, and g,h: H—>K, be different

( v*u><% | v—ull?, VvEK,. 4

nonlinear operators, respectively. For any given constants p, >0 and p,>>0, finding ", y* € K, , such that

|2>Oa VxEH:;,ﬁ (x)EK,
1 ’ 5
(o To (s y )y =g e ) g () =y )+ | g.(x)—y  [[?=0,V2EH:g,(2)EK,

(T (y" s ) +a" —gi(vy D)o (@) —x” >+%‘ | g1 (&) —x

which is called a new system of general nonconvex variational inequalities. Some special cases of (5) as fol-
lows:

1 If go=g,=1, then (5) is deformed into the following forms: finding ™ ,y* € K, , such that

(T (y" s’ ) t+a" —y ya—x >+%’ | g (x)—x" || =0, Va€H:g,(x)EK,,0 >0
, (6)

(o Ty (x" sy ) Fy —x" ya—y" >+%’ |l g.(x)—y" || 220, Va€H:g, ()€K, 0,0

which appears to be a new one.



8 FERFREAFFMEABFHK  htp://www. cqnuj. cn %32 %

2) If r=oo, then K,=K, then (5) is equivalent to finding x* ,y"* € K, such that
(T (y" s )tz —gi (v Dg (@) —x")=0,Yx€EH: g, (2) €EK,p >0
{(png(I* )y —gz(l'*),gg(x)—y*>>O,V16H:gz(1)€K,pz>0’

which is known as the system of general variational inequalities involving four different nonlinear operators, in-
[11]

(7

troduced, and studied by Noor

3 g =g,=I,T,.T,: K—>K, then (7) is deformed into the following forms: finding x* ,y* € K, such
that

{<(01Tl(y*)+1'*—yx,1'—1‘*>>O, VIGK,p1>O’ 8

(T (2" )ty " —a" ,xa—y »=0,YV2E€K,p, >0

which is known as the system of nonlinear variational inequalities involving two different nonlinear operators.

If T,=T,=T, problem (8) reduces to the system of variational inequalities, which was introduced and studied

by Verma .

HUT =T,=T:K,~>K,, and " =y =u, then (6) is equivalent to finding u€ K, , such that
<Tu,v*u>+%“ v—ul *=0,VvEK,, 9)

5) If r=00, then problem (9) is equivalent to finding « € K,, such that
(Tuso—u)=0,¥Yv€K,, (10)

which is the normal nonconvex variational inequality introduced and studied by Noor'*:?"

. It is well known that
problem (10) is equivalent to finding « € K, such that
0€ Tu+Ni (w, (1D
We now recall the well-known proposition which summarizes some important properties of the uniform
prox-regular sets.
Lemma 22" Let K be a nonempty closed subset of H, r€ (0,20 and set K, ={u€ H:d(u,K)<<r}. If
K, is uniformly prox-regular, then:1) Yu€ K,, Px (u) #=D; i) Y e w,r, Py is 6-Lipchitz continuous,

where 6:}Trr/; iii) Nﬁr (w) is closed.

Definition 4 An operator g: H—>H is said to be
1) &strongly monotone if and only if V z, 2" € H, 3 £>0 such that

(glx) =g x—a )= a—2" | % (12)
2) y-Lipchitz continuous if and only if V x,2"€ H, 3 %>>0 such that
| gC)—gH | <7 | z—x" | . (13)

An operator T: HX H—>H is said to be
3) relaxed (w.t)-cocoercive with respect to the first variable if and only of V z,2"€ H, 3 1>>0 and «>>0

such that
(T(x, *)=TQ@ s ) a—aHh ==l T, «)=TG ) P+ a—a" | 7 (14)
4) p-Lipschitz continuous with respect to the first variable if and only if ¥V z,2"€ H, 3 x>0 such that
| T(xs e )—=TG s ) | <pllz—2" I ; (15)
5) y-Lipschitz continuous with respect to the second variable if and only if ¥ vy, € H, 3 y>0 such that
I TCe o) =TCe oy <yl z—2"Il. (16)

Remark 2 From the above definition, the identity operator I be a 1-strongly monotone and 1-Lipschitz
continuous mapping. If operator g: H—>H is &strongly monotone and y-Lipchitz continuous, then p=¢. If
T:HXH—>H be a strongly monotone mapping with respect to the first or second variable, then T must be a
relaxed cocoercive mapping with respect to the first or second variable.

Lemma 3" x*,y" €K, is a solution of the system of general nonconvex variational inequalities problem
(1), if and only if



K
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x” :PKr[gl(yx )7[01T1(yx s )]

) e (17)
y* :PKr [gz(l‘A )_PZTQ (T* 9y* )]
where P is the projection of H onto the uniformly prox-regular set K.
Lemma 4% Let {a,}) CR", {b,) CR". We {urther assumed that

a1 <<(1—d)Da,+b,, ¥ n=n, ., (18)

where n, is some nonnegative integer, d, € (0,1) with Zd,, =o° and b, =0(d,), then a, > 0 as n —> <o,
n=20

3 Main results

In this section we use LLemma 3 propose a relaxed two-step algorithm for solving problem (5), further-
more we consider the convergence of this algorithm.

Algorithm 1 For any initial initial points x,,y, € K,, the sequences{x,}, {y,} are generated by the fol-
lowing iterative manner:

Tyt :(l—a,,)l',,+a,,sl (PKr (g1 (y,,)—pl Tl (y,, 91',,)))
yor=—B)y, +8,S: (P (g, (x,)—p, To (2, 03,0))

where K, is a uniformly prox-regular set, {a,},{8,} are two sequences in [0,1] and p, »p: is positive real num-

19

bers, S,,S; are two Lipschitzian mappings.

2
Let F(S))={x€H:Sx=x},F(S)=F(S;), the solutions set of (5) is denoted by SOL(5). We first
i=1

prove the following Lemma, which will be helpful to prove our main result of in this section.
Lemma 5 Let H be a real Hilbert space. Let {x,} and {y,} be sequences in H such that
2= I+ Ty —y" | <max{Q—r)A—s) 1o, —2" | + [l y.—»"

[) (20)

for some 2" ,y" € H, where {r,} and {s,} are sequences in (0,1) such that Zrn = oo and Z.\‘,, =00, Then

n=0 n=0

{x,} and {y,} converges to x* and y~ , respectively.
Proof Firstly, we define the norm || * ||, on HX H in the following form
o =zl +1lyll,V.,»€EHXH.
Then(HXH, || « || ) is a Banach space. Hence by the define of || + || 1,(20) implies that
| (@irsyar) — @y i <max{(Q—r)A—s)} | (x,oy)— @ oy .
Using Lemma 4, we have

lim | (z,,y.)— "y ) I =limC | z,—z" || + [ y,—»" [ )=0.

n—oco

Therefore, {x,} and {y,} converges to 2" and y” , respectively. This completes the proof.
We now present the approximation solvability of the problem (5).

Theorem 1 Let H be a real Hilbert space and KC H be a nonempty closed convex set, K,CK be a closed

. . . . . r
uniformly prox-regular set. Let Px be a Lipschitz continuous operator with constant §= 7. Let T,: K, XK,—~K,
r r—r

and g;: K,—~K, be mappings such that T, is relaxed (w; ,#;)-cocoercive, p,-Lipschitz continuous with respect to
the first variable, 7,-Lipschitz continuous with respect to the second variable and g; is 7:-Lipschitz continuous,
&-strongly monotone mapping for :=1,2. Let S;: H—>H be 9,-Lipschitzian mapping for i=1,2 with F(S)#
s {a,}s {B,} are two sequences in [0,1]. Assume that the following assumptions hold:

D 0<<y, =a, (1 =980, 71) —B.96 (. +0,)<1,

i) 0<<Q,, =B, (1 =900, 7.) —a, 96 (¢ +0,)<1,

i) >0, =, and >0, =c°,

n=0 n=0

where 9=max{9,,0,} and ¢, =/1—2&+ 9 ,0,=/1+20wui =201t tpoip; i=1,2. If SOL(5) NF(S)#J,
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then the sequences {x,}and {y,} generated by the Algorithm 1 converges to x* and y~ , respectively, such that
(" vy )ESOL(5) and {x" ,y" } € F(S).
Proof Let us have (x" ,y")E€SOL(5) and {x" ,y" } €F(S). By Lemma 3, we have
x” :PK,,[{;‘] (y)O—p T (y" vx™ )]
{y* :PKr[gz(l'* )= To(x™ s y” )]’
Also since {z" ,y" } € F(S), we have
2" =5 (Px (g1 (y" D)= T (y" 2" )))
, ( , 2D
{y* =S, (Px (g2 (")~ T (x" sy D))
To prove the result, we first evaluate || x, 1 —x" || for all n==0. Using (19) and (21), we obtain
|z =2 I =1 Q—a)x, +a,S (Px (g ()= Ty (v —x" || <
A—a) a,—2" || +a, | S1(Px (g1 (y.)—p T1 (3,52, =S (Px (g1 (y D—pTi(y" a2 ) | <
A—a) lx,—x" || +a,9,8 g1 (y)—a1 ()= (T (y,sx,) =T (y" sx™ ) || <<
A=a) lz,—2" | +a9:6 gy =g (v D= =y | +
a,9:0 [l y,—y" —p (Ty (3, o) =T (v x| +a9:00 | Ti(y™ s2,)—Ti(y" sa™) |l (22)
Since g, is g -Lipschitz continuous and & -strongly monotone, we have
g (v =g D= =y I'=llg)—ga ) II"—2(g (v =gy Dy, —y >+ ly,—y" '
nly—y I =26lly,—y 1"+ ly.—y" "=Q—26+9D | y,—y" I % (23)
By the assumption about T, and the definition of relaxed cocoercive and Lipschitz continuous, we have
v, =y =0 (T () =Ty e, ) =1y, =y 1" =20(T (y,sz) =T (y" sz, sy, —y )+
O Ty ) =T (v sz ) 1Py, =" "+ 200 | T\ (yyve) =T (" ) 12 —20180 |y, — " |12+

O Ty yyse) =Ty sz ) 1Py, =" 1" 200 | v, =y 12 —206, | y,—y" |7+
o |l ye—y 1"=Q+2pw0pi =200, toip) |y, —y" |17 (24)
By 7:-Lipschitz continuity of T, with respect to second variable, we have
I Ty sa ) =Ty s <y lla,—x" Il (25)
Substituting (23) ~(25) into (22), we have
|z —2" | <U—a,+a,9,007) | 2,— 2" | +a,9,8(¢+0) | y,—y" || & (26)
where ¢, =/1—2& + 7 .0, =./1+2p 0 pl =201t +pip .
Similarly, we have
Iy =y 1<<B.9.8( +0) | 2y =2 | +A—=B,4B8.9.80.7:) | yua—3" |- 27)

where ¢ =./1=2& + 55 0. =/ 1+ 200,05 —20:1, 05 115 .
Adding (26) and (27), taking 9=max{9,,9,) we get
[z —x" [+ ypr—y" | <U—a,+,9007) | z,—2" || +a,90(p +0) | y,—y" | +
B9, +0) | 2, — 2" | +A—B,+B900.7) | y.—y" | =
[1—(a, (1 =900, 7)) —B,90 (. +0.)) | &, — 2™ | +[1— (B, (1—=98p,7) —a, 98 (g +0.)) | y, —y" || <
max{(1—=0y,, A=)} (2, == | + 1 y,—y" [,
where 2,,=a, (1—=96p,7,) —B,90 (¢, +0,) s 2., =B, (1 =900, 7,) —a,96 (p, +0,). By the assumptions and Lemma

5, we get that the sequences {x,} and {y,} converges to x" and y” , respectively. This completes the proof.

Remark 2 Theorem 1 improve and extend the Theorem 4. 1 in Wen et al. ', which itself is an extension

and improvement of the main result in Noor''" and Verma*.

4 Conclusion

A new system of general nonconvex variational inequalities defined on uniformly prox-regular sets are con-

sidered in this paper. We propose a parallel projection algorithm which converges to its solution and common
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fixed points of two Lipschitzian mappings. We also prove that the algorithm is convergent. The results of this
paper extend some corresponding results on the variational inequalities and related optimization problems. It is
an interesting open problem to implement these algorithms for solving the system of variational inequalities nu-

merically and compare its efficiency with other iterative methods.
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