广西科学 Guangxi Sciences 1999, 6 (2): 11ト 114

团花树皮的环烯醚萜类成分 Iridoids from the Bark of Anthocephalus chinensis (A. cadamba)

韦宏

Wei Hong

(广西中医药研究所 南宁市东葛路 20-1号 530022) (Guangxi Institute of Traditional Medical & Pharmaceutical Sciences, 20-1 Donggelu, Nanning, Guangxi, 530022)

摘要 从团花树皮中分离得到 6个环烯醚萜类化合物 根据光谱数据和理化性质鉴定它们的结构分别为马钱素 甙元 (I),马钱素 (II),马钱酸 (III),8表金吉甙 (IV),当药甙 (V),3'-O-咖啡酰当药甙 (VI)。其中I ~ V 均为首次从该植物中分离得到,VI为新化合物 关键词 团花 环烯醚萜类 3'-O-咖啡酰当药甙 中图法分类号 0.624.13

Abstract Six indoids were separated from the bark of Anthocephalus chinensis(A. cadamba) and they were identified as loganol (I), loganin (II), loganic acid (III), 8-epikingiside (IV), sweroside (V) and 3'-O-eaffeoylsweroside (VI) on the basis of their spectral data and physicochemical properties. Iridoids I ~ V were obtained from the title plant for the first time, and iridoids VI was a new compound.

Key words Anthocephalus chinensis (A. cadamba), iridoids, 3'-O-caffeoylsweroside

团花 [Anthocephalus chinensis (A. cadamba)] 为广泛分布在南亚及我国南方六省区的速生乔木树 种,资源十分丰富 其树皮在印度古医"阿优吠陀 (Ayurvedo)"经中用于治疗蛇咬伤、解热退烧、痢疾 等多种疾病^[1]。在印度尼西亚,该植物被当地用于治 疗疟疾^[2]。团花的这些药用功能,引起了各国医学界 的注意,从中已分离鉴定出生物碱^[3]、三萜皂甙^[1]等 成分。为了开发利用团花,作者对其树皮进行了系统 的化学成分研究,从中分离鉴定出 6个环烯醚萜类化 合物:马钱素甙元 (I),马钱素 (II),马钱酸 (III),8表金吉甙 (IV),当药甙 (V),3'-0咖啡酰 当药甙 (VI)。其中VI为新化合物,其余成分均为首次 从该植物中分离得到

1 仪器 试剂及材料

日本分光 FT/IR-5300型红外分光光度计 (KBr 扩散反射法),日立330型紫外自记分光光度计,日本 电子 EX-270型核磁共振仪(TMS为内标),日本电子 JMS SX-120型质谱仪,日本分光 DIP-370型数显旋 光仪,Merck(60~230目)柱层析硅胶,Merck(Kieselgel 60F²⁴⁵, 0.25 mm)薄层层析板,反相柱层析担体 用 Cosmosil 75C18-OPN (Nacarai Tesque), Sephadex LH-20为瑞典 Pharmacia LKB公司产。团 花树皮 1990年采于印度尼西亚苏门答腊 (Sumatera) 岛,原植物鉴定为 Anthocephalus chinensis (Lam.) A. Rich. ex Walp. (Syn. A. cadamba Miq.)。

2 提取分离

干燥团花树皮 1.6 kg,用于甲醇回流提取得甲醇 提取物 (192 g),甲醇提取物用氯仿 – 甲醇 – 水 (4 4:3)分配,得氯仿提取物 (A,21 g);水相回收溶 剂后,用正丁醇 – 水 (1:1)分配,得正丁醇提取物 (B,46 g)。

A(21 g)硅胶柱层析分离,正已烷-醋酸乙酯梯 度洗脱,得(2:1)洗脱部位(A-1,800 mg)和(1:1)洗 脱部位(A-2,4g), A-2部位经硅胶柱层析和 Sephadex LH-20柱层析纯化,得化合物I (49 mg)。B (30 g)硅胶柱层析,氯仿-甲醇梯度洗脱,得 B-1(0.6 g), B-2(2.9g), B-3(3.0g), B-4(3.6g), B-5(4.8g) 5个组分。B-经硅胶柱层析和反相柱层析分离,得VI (30 mg); B-3经硅胶柱层析和反相柱层析分离,得VI (30 mg), IV (35 mg), V (430 mg); B-经硅胶柱层析和反 相柱层析分离,得III (46 mg)

¹⁹⁹⁸⁻¹²⁻⁰⁴收稿。

3 结构鉴定

化合物I 白色无定形粉末。IR (KBr) γ cm⁻¹: 3380, 2940, 1690, 1630 UV λ_{max}^{MeOH} nm (loge): 237 (3.87), ¹ HNM R(CDCb) à 7.41(1H, s, 3-H), 4.98 (1H, d, \models 5.3Hz, 1-H), 4.13(1H, m, 7-H), 3.72 (3H, s, - OCH), 3.18(1H, m, 5-H), 2.32(1H, dd, \models 13.8, 7.6Hz, 6-Ha), 1.96(1H, dd, \models 8.6, 5.3Hz, 9-H), 1.56(1H, ddd, \models 13.8, 8.6, 4.6Hz, 6-Hb), 1.15(3H, d, \models 7.6Hz, 10-H) ¹³ CNM R (CDCb) à 95.6(C-1), 151.3(C-3), 111.7(C-4), 31.4(C-5), 42.1(C-6), 74.3(C-7), 41.8 (C-8), 46.3(C-9), 13.4(C-10), 168.0(C= O), 51.3(- OCH), EI-MS m/z 228(M⁺, C11 H6 Os), 根据以上光谱鉴定I 为马钱素甙元 (log anol)^[4].

化合物II 白色无定形粉末。 [α]²⁶_D (CH₃OH): -84. 3° IR (KBr) γ cm⁻¹: 3389, 2932, 1691, 1636 UV_{max}^{MeOH} nm (loge): 231 (3.94) ¹ HN M R (CD₃ OD) δ 5. 21 (1H, d, ⊨ 4. 3Hz, 1–H), 7. 33 (1H, d, J= 1. 3 Hz, 3−H), 3. 10 (1 H, m, 5−H), 2. 18 (1 H, m, 6-Ha), 1.59 (1H, m, 6-Hb), 4.00 (1H, m, 7-H), 1.82 (1H, m, 8-H), 1.98 (1H, m, 9-H), 1. 04 (3H, d, ⊨ 6. 9Hz, 10-H), 3. 64 (3H, s, -O CH_b), 4. 60 (1H, d, \neq 7. 9Hz, 1[']-H), ¹³ CNM R (CD³OD) & 98.5 (C-1), 152.9 (C-3), 114.7 (C-4), 32.9 (C-5), 43.4 (C-6), 75.7 (C-7), 42.9 (C-8), 47.2 (C-9), 14.2 (C-10), 170.3 (C=0), 52.5 (- O CH_b), 100.8 (C-1'), 75.4 (C-2'), 78.7 (C-3'), 72.3 (C-4'), 79.1 (C-5'), 63.5 (C-6'). HRFAB-MSm/z 413.1402 (C17 H26 O10 Na, 计算值 413. 1407)。根据以上光谱鉴定Ⅱ为马钱素 $(\text{loganin})^{[4]}$

化合物III 白色无定形粉末。IR (KBr) γ cm⁻¹: 3372, 2935, 1695, 1639 UV λ_{max}^{MeOH} nm (log ε): 230 (4.03), ¹ HNM R(CD⁵OD) & 5.18(1H, d, \models 4.5Hz, 1–H), 7.05 (1H, d, \models 1.2Hz, 3–H), 3.06 (1H, m, 5–H), 2.18 (1H, m, 6–Ha), 1.65 (1H, m, 6– Hb), 3.99 (1 H, m, 7–H), 1.84 (1H, m, 8–H), 1.97 (1H, m, 9–H), 1.02 (3H, d, \models 7.0Hz, 10– H), 4.60 (1H, d, J= 7.8Hz, 1′–H), ¹³ CNM R (CD₃O D) & 97.7 (C–1), 148.1 (C–3) 119.9 (C– 4), 33.5 (C–5), 43.3 (C–6), 76.0 (C–7), 42.6 (C–8), 47.6 (C–9), 14.1 (C–10), 176.5 (C= O), 100.6 (C–1′), 75.5 (C–2′), 78.6 (C–3′), 72.3 (C–4′), 78.9 (C–5′), 63.4 (C–6′), FAB-M S m /z 376 (M^{*}, C₁₆ H₄O₁₀) 根据以上光谱鉴定III为马钱酸 (loganic acid)^[5]。

化合物IV 白色无定形粉末。 $\left[\alpha\right]_{p}^{25}$ (CH³OH): -51. 5°° IR (KBr) γ cm⁻¹: 3356, 2936, 1703, 1636 $UV\lambda_{max}^{M\,eO\,H}\,nm$ ($log\varepsilon$): 231 (4. 20), 1 HNM R ($CD_{3}\,O\,D)$ δ 5.45 (1H, d, J= 7.3Hz, 1−H), 7.55 (1H, s, 3-H), 3. 05 (1H, m, 5-H), 2. 82 (1H, dd, J= 16. 5, 4. 6Hz, 6-Ha), 2. 45 (1H, dd, ⊨ 16. 5, 11. 2Hz, 6-Hb), 4.45 (1 H, m, 8-H), 2.08 (1H, m, 9-H), 1. 46 (3 H, d, J= 6. 6 Hz, 10−H), 4. 65 (1 H, d, \neq 7.9, 1'-H), 3.69(3H, s, - OCH). ¹³CNMR (CD₃OD) & 97.1 (C-1), 155.2 (C-3), 110.3 (C-4), 29.0 (C-5), 35.7 (C-6), 175.5 (C-7), 76.5 (C-8), 42.7 (C-9), 22.5 (C-10), 169.0 (C=0), 52.9 (- OCH₃), 101.4 (C-1'), 75.5 (C-2'), 78.7 (C-3'), 72. 4(C-4'), 79. 3(C-5'), 63. 7(C-6'), FAB-M S m /z 404(M⁺, C₁₇ H₂₄O₁₁)。根据以上光谱鉴定IV 为 8-表金吉甙 (8-epikingiside)^[6]。

化合物V 白色无定形粉末 $[\alpha]_{0}^{26}$ (Me³O H): -222 3。IR (KBr) γ cm⁻¹: 3354, 2922, 1691, 1616 UV λ_{max}^{MeOH} nm (log^c): 240(4.02) ¹ HN M R(CD₃OD) ⁸ 5.55(1H, d, \models 1.7Hz, 1–H), 7.55(1H, s, 3–H), 3.08 (1H, m, 5–H), 1.70 (2H, m, 6–H), 4.40 (2H, m, 7–H), 5.45 (1H, m, 8–H), 2.65 (1H, m, 9– H), 5.20 (1H, dd, \models 10.2, 2.3Hz, 10–Ha), 5.27 (1H, dd, \models 17.5, 2.3 Hz, 10–Hb), 4.62 (1H, d, \models 7.9Hz, 1[′]–H), 3.14 (1H, m, 2[′]–H), 3.35 (1H, m, 3[′]–H), 3.16 (1H, m, 4[′]–H), 3.27 (1H, m, 5[′]– H), 3.60 (1H, m, 6[′]–Ha), 3.85 (1H, dd, \models 11.9, 2.0Hz, 6[′]–Hb) ¹³ CNM R见表 1 HRFAB-M S m/z 381.1160 (Ci⁶ H²O⁹Na, 计算值: 381.1164). 根据以 上光谱数据鉴定V 为当药甙 (sweroside)¹⁷.

化合物VI 白色无定形粉末。 $[\alpha]_{p}^{21}$ (CH⁵OH): -130° IR (KBr) γ cm⁻¹: 3360, 2930, 1693, 1610 UV $\lambda_{\text{max}}^{\text{M} \circ \text{OH}}$ nm (log^e): 219 (4.13), 240 (4.12), 297 (3.99), 328 (4.09) ¹ HNMR (CD³OD) δ 5.56 (1H, d, \models 1.7Hz, 1-H), 7.55 (1H, s, 3-H), 3.08 (1H, m, 5-H), 1.70 (2H, m, 6-H), 4.40 (2H, m, 7-H), 5.45 (1 H, m, 8-H), 2.65 (1H, m, 9-H), 5.23 (1H, dd, \models 9.9, 2.0Hz, 10-Ha), 5.26 (1H, dd, J= 17.5, 2.0Hz, 10-Hb), 4.76 (1H, d, J= 7.3Hz, 1'-H), 3.38 (1H, m, 2'-H), 5.01 (1H, t, \models 9.8Hz, 3'-H), 3.48 (1H, m, 4'-H), 3.42 (1H, m, 5'-H), 3.65 (1H, m, 6'-Ha), 3.86 (1H, dd, \models 11.9, 2.0Hz, 6'-Hb), 6.28 (1H, d, \models

Guangxi Sciences, Vol. 6 No. 2, May 1999

15.9Hz, 8["]-H), 7.54(1H, d, J= 15.9, 7["]-H), 7.00 (1H, d, J= 2.0Hz, 2["]-H), 6.73(1H, d, J= 8.2Hz, 5["]-H), 6.90(1H, dd, J= 8.2, 2.0Hz, 6["]-H).
³ CNM R, 见表1 HR FAB-MS m /z 543.1462(C25 H28 O12 Na, 计算值: 543.1431), 根据以上光谱数据鉴定 VI为3[']-O咖啡酰当药甙 (3[']-O-caffeoylsweroside).

3'-O 咖啡酰当药甙 (VI)甲醇解生成当药甙 (V) 和咖啡酸甲酯 (VII) 取VI(3 mg)溶于甲醇(5 mL)中, 加入 Na² CO³(2 mg),在 40° 搅拌 2 h,反应混合物加 入 Dowex 50w x 8 (H型)树脂中和,过滤,滤液减 压回收溶剂后得粗产物 粗产物经硅胶柱层析(1.5 g 硅胶)纯化,以氯仿 – 甲醇 – 水 (10:3 1)下层溶液为 洗脱剂,得产物V (1.6 mg)和VII (0.8 mg) V 和VII 经薄层层析、¹ HNMR IR (KBr)测试,结果分别与 当药甙和咖啡酸甲酯对照品结果一致。

图 1 3'-0咖啡酰当药甙的甲醇解反应

Fig. 1 M ethanolysis of 3'-O-caffeoylsw eroside

 $Swe \ roside(V \); \ 3' - O-caff \ eoy \ lsw \ eroside(VI); \ Caff \ eic \ acid \ methyl \ est \ er \ (VII).$

4 讨论

化合物VI为白色无定形粉末。高分辩快原子轰击 质谱 (HRFAB-MS)测定结果确定其分子式为 C25 H28 O₁₂ IR (KBr) 提示有羟基 (3 360 cm⁻¹) 及 α β 不 饱和酯基 (1693, 1610 cm⁻¹)。UV给出最大吸收峰 为 219 (ε = 13 500) , 240 (ε = 13 000) , 297 (ε = 10 000), 328 (ε= 12 300) nm⁻¹ HNM R提示有反式双键 $[\delta_{\rm H} 6.28 \text{ (d, } J= 15.9 \text{ Hz}), \delta_{\rm H} 7.54 \text{ (d, } J= 15.9$ Hz)]和1,2,4三取代苯环 [&7.00 (d,)=2.0 Hz), & 6.73 (d, ⊨ 8.2 Hz), & 6.90 (dd, ⊨ 8.2, 2.0 Hz)]¹³ CN M R测定结果显示 VI 除了比当药甙 (V) 多了咖啡酰基的信号外,其余信号两者非常相 似 (表 1)。将 VI溶于甲醇中,用 Na2CO3进行醇解,结 果生成V和咖啡酸甲酯(VII)(图 1)。根据以上结果可 以推证VI是V 的咖啡酰基化产物。从表 1可以看出,VI 糖上的 1位及 3位碳的¹³ CNM R信号 (C-1′: ∞100.5; C-3': & 79.5) 比V 糖上相应碳的¹³ CNM R信号 (C- $1': \delta_{c} 100.4; C-3': \delta_{c} 78.5)$ 处于低场,而 VI 糖上的 2位和4位碳 (C-2: &74.0, C-4: &

表 1 3'-O咖啡酰当药甙 (VI)和当药甙 (V)的碳 –13核磁共 振数据

Table 1 ¹³C-HMR data for 3[']-O-caffeoylsweroside (VI) and sweroside (V) (67.8 MHz. CD₃ OD, δc)

	Carbon	VI	V
Indoid moiety	C-1	98. 9	98. 7
	С–3	154.8	154.7
	C-4	106.7	106.7
	С-5	29. 2	29. 1
	С-6	26.7	26.6
	С-7	70. 5	70.4
	C8	134.0	134.0
	С–9	44.6	44. 4
	C-10	121.7	121.7
	C-11	169.2	169.2
l−O-β−D− glucosyl moiety	C-1'	100. 5	100. 4
	C-2'	74.0	75. 3
	C-3'	79.5	78.5
	C-4'	70.6	72. 2
	C–5′	79.0	79. 0
	C-6'	63. 2	63. 3
3 [′] -O-caffeoyl moiety	C-1″	128.6	
	с-2″	115.9	
	C-3"	147.6	
	с-4″	150.3	
	C-5"	117.3	
	С-б″	123. 7	
	C-7′	147.8	
	C-8	116.1	
	С-9	169.8	

70. 6) 则比 V 糖上的 2位和 4位碳 (C-2[']: & 75. 3; C-4[']: & 72. 2) 处于高场,表明 VI 中咖啡酰基连在糖 3位 碳的氧上^{[8],1} HNM R数据显示 VI 糖的 3位碳上氢的 信号明显处于低场 (3[']-H & 5. 01),也支持了以上推 论。故 VI 的化学结构鉴定为 3['] \Rightarrow 咖啡酰当药甙

致谢

本研究得到大阪大学药学部北川 教授,小林资 正教授、 堀一之博士的指导,在此表示衷心感谢。

参考文献

- Banerji N, Dutta N L. Structure of a new saponin from stem bark of *Anthocephalus cadamba* Mig. Indian J Chem Sect B, 1976, 14R 614.
- Uji T, Wiriadinata H, Kitagawa I et al. Prosiding seminar dan lokakarya nasional etnobotani. Cisarua-Bogor, 1992, 60.
- 3 Handa S S, Borris R P, Cordell G A. NMR spectral anal-

ysis of cadambine from *Anthocephalus chinensis*. J Nat Prod, 1983, 46 325.

- M pondo E M, Garcia J Iridoids from Gentiana verna.
 Phytochemistry, 1989, 28 2503.
- 5 El-Nagger L J, Beal J L. Iridoids A review. J Nat Pord, 1980, 43 649.
- 6 Gercia J. Lavaitte S, Gey C. 8-epikingiside and its vanillate ester, isolated from *Gentiana pyrenaica*. Phytochemistry, 1989, 28 2199.
- 7 Van der Sluis W G, Labadie R P. Secoiridoids and xanthones in the genus *Centaurium*. part II : secoiridoid glucosides in *Centaurium spicatum*. Planta M ed, 1981, 41 221.
- 8 Yoshimoto K, Itatani Y, Tsuda Y. ¹³ C-nuclear magnetic resonance (NMR) spectra of O-acylglucoses additivity of shift parameters and its application to structure elucidations. Chem Pharm Bull, 1980, 28 2065.

(责任编辑:邓大玉)

(上接第110页 Continue from page 110)

因此可以推断, Ag⁺ 离子对漆酶的抑制作用可能 是由于结合底物后,漆酶的构象发生了变化,显露出 抑制剂的结合部位^[5]。部位中可能含有氮或硫等配位 原子,对 Ag⁺离子有较强的吸引力^[6],因而表现为 ESI复合物的解离常数较小。至于具体的结合情况, 尚有待于进一步的研究。

已有许多文献报道阴离子可以竞争性地抑制漆 酶的催化活性^[2,7,8],我们也曾报道稀土金属离子对 漆酶的催化活性表现出强烈的竞争性抑制作用^[4]。本 文首次报道了 Ag⁺离子对漆酶的催化活性表现出反 竞争性抑制的特点,这对于深入理解漆酶催化氧化反 应的机理是很有意义的。银的杀菌能力是众所周知 的,但它也属于对生物体具有潜在危害性的重金属元 素之一^[9],因此本文的研究结果也可以为进一步从分 子水平上阐明银的毒理提供一些新的信息。

参考文献

1 王光辉, 江 涛. 漆树漆酶的催化氧化作用 VI: 漆酶的催

化氧化反应机理研究.武汉大学学报(自然科学版),1994, 1 59.

- 2 Holwerda R A, Gray H B. Mechanistic studies of the reduction of *Rhus vernicifera* laccase by hydroquinone. J Amer Chem Soc, 1974, 96 6008.
- 3 王光辉,江 涛,张昌军等.漆树漆酶的催化氧化作用V: 漆酶 /O₂体系获取半醌自由基的研究.武汉大学学报 (自 然科学版),1992,4 88.
- 4 王光辉,黄厚评,蔡汝秀.漆树漆酶的催化氧化作用 VII:稀 土金属离子对漆酶催化活性的抑制作用.武汉大学学报 (自然科学版),1994,3:66.
- 5 颜思旭,蔡红玉. 酶催化动力学原理与方法. 厦门: 厦门 大学出版社, 1987. 66.
- 6 Greenwood N N, Earnshaw A. 元素化学. 下册. 王曾隽, 张庆芳, 林蕴和等译. 北京: 高等教育出版社, 1996. 435.
- 7 周易勇.漆酶的抑制剂.中国生漆, 1992, 11: 19.
- 8 涂楚桥,梁 宏,王光辉. Cl、 NO5、 SO² 离子对漆酶 催化活性的抑制作用.广西科学,1998,5(4):285~287.
- 9 王 夔,韩万书.中国生物无机化学十年进展.北京: 高 等教育出版社, 1997. 214.

(责任编辑: 蒋汉明 邓大玉)