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Nevanlinna theory is used to investigate the zeros distribution of solutions of /' + A(z)f + B (z)f=

F(z), whered(z),B(z) ,F(Z)% Oare all entire functions of finite order of growth, and obtain Theorem 1 and

Theorem 2.
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Nevanlinna '+ A(z)f'+ B(z)f= F(z) , A(z),B(z),F(z)
Z= 0 . 1 2

Using value distribution of Nevanlinna theory
to deal with complex oscillation of solutions of lin—
ear differential equations is being more activein the
world. Especially, to investigate the complex oscil—
lation of non-homogeneous linear differential equa—
tions is an important aspect. Consider

SO+ A (z2) D+ e+ A, (z)f = F(z),

(1
whered,(z)(j= 0, 1, .k— L= 1),F(z)7 Oare
entire functions of finite order. If 4;(z) are all poly—
nomials. then we have obtained many precise re—
sults on the complex oscillation of solutions of( 1) in
references [2,4,5,6,9]. IfA4;(z) are not all polyno—
mials, it is beginning to investigate the complex os—
cillation of solutions of (1). In this case, we may
find some stimulating results in references [3, 7].
Now we only focus our attention on the complex os—
cillation of solutions of second order non-homoge—
neous linear differential equations with entire coeffi—
cients.

Denote the exponent of covergence of the zero—

sequence of entire functiong(z) byA(g) . the expo—
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nent of convergence of the sequence of distinct zeros
of g(2) by)‘_(g) > and the order of growth of g(z) by
€(g) in this paper. In an addition, other notations
of function theory are standard, e.

[8].

g. in reference

1 Main results

Consider the equation.

f'v A+ B(z)f= F(z). (2
where A(z),B(z).F(z) # Oare all entire functions
of finite order of growth. The homogeneous linear
differential equation of (2) is as follows:

S A+ B = 0 (3)

Theorem 1 Let A(z), B(z), F(z)7Z 0be all
entire functions of finite order, and f(z) ,f>2(z) be
two linearly independent solutions of (3) such that
A(Sf1S2) <== .
at least satisfy the following

(a) €(f) <==
(b) €(f) = A(f).

Remark The conditions of Theorem 1 are nec—

Then any solution f(z) of (2) must

essary. For example, consider the equation

v A+ (174 A(z)*+ 1724 (z) +
P(z))f= F(z).
where A(z) is a transcendental entire function of fi—
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nite order, P (z) is a nonzero polynomial and F(z)
# 0is an entire function of finite order. Its ho moge—
neous equation is

A+ 1/24'(z) +
P(z))f = 0. )
We know any two linearly independent solutions
f1(z), fa(z) of (* ) must satisfyA(ff2) <<= . In
fact, make transformation

f= ye—l[z{A(z)dz
and (* ) becomes

y'+ P(z)y= 0

(1/4 A(z)* +

=)
It is easy to follow that any two linearly indepen—
dent solutions 1 (z),y2(z) of (* * ) must satisfy
A(y1y2) <= . This means thatA (f1f2) <°oo.
Theorem 2 Let 4(z), B(z), F(z)7 Obe all
entire functions of finite order, and at least one of
And let f(z),
f2(z) be two linearly independent solutions of ( 3),

andf>= H(z) exp{— | A(z)dz} , where H(z) is a

A(z), B(z) be not a polynomial

nonzero entire function of finite order- Then any so—
lution f (z) of (2) satisfies
(a) IK(f1) <= .
lowing holds
(i) €(f) <o
Gi) €)= A2 () -
(b) KA(f1) = == . ThenA(f) = == .

Then at least one of the fol—

2 Lemmas needed for the Theorems

Lemma 18! Let f(z) be a transcendental

meromorphic function, and k£ be a positive integer-

Then

m(r fYIf) = S(r.f) .

Lemma 2! If F(r) and G(r) are nondecreas—
ing functions on (0,°°) such that F(r)< G(r),rg
E , where £ is a set with at most finite measure,
1, there exists#,> Osuch
that F(r)<< G(T) forallr> 7, .

Lemma 3 Letf (z) be a nontrivial solution of
(3) such thatA(f) <o . Then

Lim [log m (r,f" /) Nog r = max((4),
°(B) }.

Proof. SinceA(f) <°° , we can write

fE)= Gz)e

where G(z),g(z) are both entire functions and ¢( G)

then for any constant 1>

<©© . Substituting f (2) into (3), we get

g?’=- B- g4+ g'ig'+ 26 16)- G 1G-
AG /G.
By Nevalinna theory, it follows that
m(r.g < 2m(r,A)+ m(r.B)+ S(r.g )+
66

Oflog r} ,
T(r.g )< 2T(r,A)+ m(r,B)+ Oflog T(r,
g)).r€ E

and that,

where E is a set of finite measures. By Lemma 2, it
is easy to get that

¢(g' )< max{€(4).%B)}. (4
On the other hand, from f (z) , it gets

= G 16+ g'.
So that,

m(r.f )= T(r.g)+ O(logr}. (5)

From (4) and (5), it is easy to prove Lemma 3.

3 The Proof of Theorem 1

By variation of parameters, for a solution f (z)

of (2), we can write

f(z)y= U@ fitz)+ U(z)fa(z), (6)
whereU(z) ,U (z) are determined by

U'si+ U= o, (7)

U'ri+ Up'=F. (8)
From (7), (8) and Wronskian of /1 and f2:

WS = el
it gives
U'= - sziA‘““f. (9)
From (6) it follows
= U= U
Differentiating two sides of the above, we obtain
- U= Un st - (- U st =
u,.
Combining (7), we have
U= (1 = SO = 0
Differentiating the above, we get
U i = i i = UL I
o VL= F) = fi)
’ S22 lfa= f fife Ifa = fu
From (9), it follows that .
S VRSV SEE
= UL 1= )
ULl = 1SS = S ’)}
Sl lfo= f Fifr Ifa— S ’
On the contrary, by Wronskian of f| and f, , from
(3), it follows .
S o= iy = el
Substituting the aboveinto (10),
- F= S 1= 1
{(f’fz’,/fz - ) = f)
S = f VAVERY/ R A
And that
= FSS = S )
{(ffz’,/fz — s = 1))
S fa= f VAVERY/EE A
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Applying Nevanlinna theory to the above, it gets
m(r.f = m@E.F Y+ S(r),

and then
T(r,f)< N((r,1/f)+ Tr,F)+ S,(r),
where §(r) = S(r.f1)+ S(r.f2)+ S(r.f). By

Lemma 1, it gives
2 2
20 Sfi) =20 m(rof; if)
1 1
So that
2
T(r F) + 21 m(r,

F1

T(r.f)= N, LIf)+

£+ O(log rT(r.f))

where £ is a set of finite measures By Lemma 2 and

re E,

Lemma 3, it easily follows that

()= max(f), (F),%(4).%B)} .
IfA(f) < max{®(F),®(4),€B)} . Then ¢(f) <
If A(f) = max{(F).%(4).%B)} »
Af)= ©(f) . Then (f) = A(f).

Now, Theorem 1 is completely proved-

noting that

4 The Proof of Theorem 2

(a) ]f>\_(f1) <o . Then we assert thatA (f) <
©> , and by Theorem 1 the conclusion is true- In
Then €(f2) = o= , We

Similarly,

fact, if assumeX (f,) = == .
shall point out this case is impossible.
from the proof of Theorem 1, it is easy to deduce

the follow ing:

fe@)y=TE@fE+ L)), (11

’Il‘,fl+ rI;’fzz 0, (12)

T'r'+ LT'n=F, (13)

T = - széﬂﬂdz, (14)

T = szJzM:W. (15)
Substituting /> (z) into (14), we have

Ty <o, (16)
and

(L) <eo. (17)
Since )

f'= (H - HA)e‘JA‘”d’, (18)

where H — HAZ 0. Otherwise, assume that H
— HA= 0, this implies that 4(z) is a polynomial
and /2 is a constant. from (3), it deduces that B
(z) is a constant. This contradicts the hypothesis.
From (13), (15) and (18), it gives
T'r'+ fIF(H - HA)= F.
So
fi= F(FH — FHA+ T'r/ 11y ",
By Nevanlinna theory, it follows
T(r,fiy< N(r,1/f)+ O{T(r,.F)+
+ T(r. T+ logrT(r.f1)) r€ E,
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T(r, H)

where E is a set of finite measures. Noting that

X(f1) <o, T(F) <o, T(H) <°° and (16), by
Lemma 2, it easily has that
(1) <=

This is a contradiction to our assumption. This
means that our assertion is reasonable.

(b) From (11), that

f = Tforft= "L
Differentiating the above, we obtain

O AR A A VA VAN L
T .
Combinig (15), we have

O AR AR A VA VAN AL
f]FiA(z)dz

Substituting £(z) into the above, we get
!

ST =T = (= TS (H TH - A)=
f1F H.
And that

f= [ \/(FH+ T'+ Ta- TH /H)
+ LA 1+ a- H JH).
From (13), (15) and (18), it has

fi'=s [F- (H - HA)fF1/T
Suhslilutingfll into (19), and noting that T’
= — HF , we obtain

frm e A= H ) = L

A—- TH /H- (H - HA)FL/L

By Nevanlinna theory, it easily deduces that

T(r.fi)< O{T(r.f)+ T(r,H)+ T(r,A)+
T(r, T+ T(r,F)} r€ E,

(19

SinceX (f1) =
By Lemma 2, and noting that ¢( H)

where £ is a set of finite measures.
oo, S(Sf1) =0
<o, ¢4) <= ,¢(F) <=° and (17), we conclude
that

) = ==
From (2), it gets

flif+ A If+ B(z)= FIf.
By Nevanlinna theory, it has

m(r,FlIfy < m(r,A)+ m@r,B)+ S(r,f),

and then

T(r,FIf)<< N(r,1/f)+ T(r,4)+ T(r,B)
+ S(r,f).
And that,

T(r.f)< N(r,1/f)+
T(r.B)+ S(r.f).
So, it easily follows that

A = oo

Now, Theorem 2 is completely proved.

T(r,Fy+ T(r,4)+
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3) m max &}”; C<a

4 lxl>co L [f(x)+ Z:]lg(x)]sgnx»oo
1) (3)
2) Hie+ T.y)= H(z,y) (1,y)€
R p(n T :
(3) T
3) (3) xi(t)  x2(1)
X1 (0= x2(t)—> O(t> o), (3)
| (3)
x=y

y== If(x)+ 25 g(x)]- Hiy)

S

456

(t+ s))y(t+ s)ds+ p(2)

22
%x(t_ £)]7 p(t)

Z] Lsinx(t— §)+

m

x(6)+ ax(1))+ ) Lsinx(t- §)+ 8x(e

- 1= p@ (5
a> 0,8> 0(j= 1,2,+,m) € R(j= 1,
2, .m), 5> 0
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ax (1) ,f(x(0)=0 g(x(t- )=

+
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