文章编号:1000-582X(2009)09-1111-06

基于 BP 网络的视电阻率快速计算

谢品芳,谢林涛,付志红,张淮清

(重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400030)

摘 要:为避开复杂的电磁场数值计算,判断地下异常,用于现场指导,提出了神经网络的方法。讨论了实际发射机电流的非阶跃下降,并结合所用发射机对响应公式进行了关断延时校正。 分析了常规的数值计算方法,由核函数的特点选用三层反向传播(back propagation, BP)网络结构,通过训练确定隐含层单元数和收敛较好的算法。用2种常规的数值算法与文中方法做仿真实验的对比,实验表明,用 BP 网络计算能快速实现瞬变电磁数据的处理,指导瞬变电磁探测。

Fast algorithm for apparent resistivity calculation based on back propagation neural networks

XIE Pin-fang , XIE Lin-tao , FU Zhi-hong , ZHANG Huai-qing

(State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, P. R. China)

Abstract: To avoid the complex numerical calculation for the electromagnetic field and determine underground abnormality, a neural network based method is proposed. In consideration of turn-off transmitter current, the effect of a linear ramp turn-off current on transmitter is corrected. The characteristics of transient expression and the traditional calculation algorithm for apparent resistivity are analyzed, and a predigest structure of network is obtained based on the kernel expression. The three-layer back propagation(BP) neural network is trained by using sample data in homogeneous half-space, and its number in hidden layer was determined. The method proposed is compared with two traditional calculation methods with simulation experiments. The result demonstrates that BP neural network has a high speed of processing data and is useful in explanation of the transient electromagnetic method.

Key words: transient electromagnetic method; turn-off effect; BP neural networks; apparent resistivity

瞬变电磁法(transient electromagnetic method, TEM)是一种时间域电磁勘探方法^[1], 广泛应用于资源勘查与工程勘察中。在很多情况下, 需要很快知道探测结果, 如何快速进行 TEM 数据处理, 显得越来越重要。

目前,瞬变电磁数据处理与解释的方法很多,但 是,在快速解释方面做得还不够,只能对采集数据作 事后处理,时间周期较长。在 TEM 反映地层信息 研究方面,有用电阻率近似公式和烟圈扩散公式来 近似反演地电参数分布的^[2-3],实际表明,其反演的

收稿日期:2009-05-16

基金项目:国家自然科学基金资助项目(40874094);三峡库区生态环境教育部重点实验室访问学者基金资助项目 (KLVF-2007-1)

作者简介:谢品芳(1946-),女,重庆大学教授,主要从事电力电子与电网络技术研究,(E-mail)xiepinfang@cqu.edu.cn。

结果与真实地电结构差别较大,双烟圈扩散所研究 的地电效果较好^[4];以线性规划法求出反射系数序 列^[5-6],其成像效果取决于分界面两侧电性差,差异 较大时才有明显的效果;用神经网络和遗传算法反 演地电结构^[7-8],这样避免了二维数值反演中求取偏 导数矩阵的困难,但实际模型较复杂,训练样本集选 择比较困难;用二次电流场作为成像场也可以反映 地下异常^[9]。

笔者以中心回线法为例,提出应用神经网络的 视电阻率计算方法,避免了校正后复杂公式的计算, 只需导入响应数据,就可快速计算出视电阻率。由 时间-视电阻率图像观测地下异常,指导下一步的 工作。

1 常规的视电阻率计算方法

在均匀半空间表面,水平放置圆形发射回线,回 线中供以阶跃下降电流,其电流表示为

$$i(t) = \begin{cases} I & t < 0, \\ 0 & t \ge 0. \end{cases}$$
(1)

中心回线装置下,二次场垂向分量 B_z 及其随时 间变化率 $\frac{\partial B_z}{\partial t}$ 可以表示为^[1]:

$$\frac{\partial B_z}{\partial t} = \frac{I}{\sigma a^3} \left[3 \operatorname{erf}(u) - \frac{2}{\sqrt{\pi}} u (3 + 2u^2) \operatorname{e}^{-u^2} \right], \quad (2)$$

$$B_z = \frac{I\mu}{2a} \left[\frac{3}{\sqrt{\pi u}} \mathrm{e}^{-u^2} + \left(1 - \frac{3}{2u^2} \right) \mathrm{erf}(u) \right], \quad (3)$$

式中: σ 为半空间电导率;a为发射框半径; μ 为均 匀半空间磁导率(近似为 4 π ×10⁻⁷ H/m);t为电流 关断时算起时间参数; $u = a/2 \sqrt{\mu\sigma/T}$ 为瞬变场参 数; erf(u) = $\frac{2}{\sqrt{\pi}} \int_{0}^{\theta_{a}} e^{-t^{2}} dt$ 为误差函数。

根据法拉第电磁感应定律,由水平线圈得到的 垂直磁场强度 H_z 的感应电压 V_z(t) 为

$$v_z(t) = \operatorname{Sn}\mu \, \frac{\partial H_z}{\partial t} = \operatorname{Sn} \, \frac{\partial B_z}{\partial t}, \qquad (4)$$

式中:n为接收线圈匝数;S为接收线圈面积;v(t) 为感应电压。

由式(2)(4)结合瞬变场参数可得

$$v(t) = \frac{\mu IS}{4at} \times \frac{1}{u^2} \times$$

[3erf(u) $-2/\sqrt{\pi} \times u(3+2u^2)e^{-u^2}$]。 (5) 在 i 常规的计算中,很多是通过计算核函数中 参数 u,再通过瞬变场参数反解得到视电阻率的值。 式(2)磁场强度时间导数是瞬变场参数 θa 的双值函 数,因此,用 $\partial B_z/\partial t$ 的核函数计算全程视电阻率会 出现多解。式(3)磁场强度是瞬变场参数 u 的单值 函数,用 B_z 的核函数计算全程视电阻率时不存在多 解情况。对于多解情况,目前有 2 种解决方法:采用 比较法,选取与前一时刻相近的视电阻率值;将磁场 强度时间导数转化为磁场,再计算全程视电阻率。 第一种方法采用了米勒法和比较法^[10-13],收敛速度 较慢;第二种方法由磁场计算视电阻率的方法较多, 如对分法、牛顿迭代等,计算时间有所缩短,但仍然 不能用于现场指导。

视电阻率作为反映地质信息的重要参数,大多 以变量出现在二次场响应公式中,或者用视电阻率 倒数——电导率作表示。笔者就是用电导率为重要 参数进行公式推导和实验分析的。

2 瞬变电磁场响应公式的校正

在瞬变电磁响应的理论计算公式中,发射电流 为理想的阶跃电流。而实际中,发射线框的电感并 不为0,所以发射电流要经过一段时间的延时才能 完全关断。不同发射机的关断判断电流衰减情况的 不同,近似地可分为三类,线性、抛物线性、指数性, 加拿大 EM37-3 为近似线性下降,W-TEM 为线性 衰减^[14],这些非阶跃关断电流都会影响到瞬变场响 应值。

用杜哈美儿积分对发射电流关断延时校正,推 导出运算公式^[15]

$$V_{1}(t) = \int_{-\infty}^{t} \frac{-\mathrm{d}I(s)}{\mathrm{d}s} V(t-s) \,\mathrm{d}s \quad t > 0, \quad (6)$$

式中: $V_1(t)$ 为考虑关断延时的感应电压;V(r)为理想阶跃电流时的响应。

若关断电流线性衰减,关断延时为t₀,

则

$$\frac{-\mathrm{d}I}{\mathrm{d}t} = \frac{1}{t_0} \quad -t_0 < t < 0, \tag{7}$$

把式(7)代入式(6)中,并使 r = t - s 可得

$$V_{1}(t) = \frac{1}{t_{0}} \int_{t}^{t+t_{0}} V(r) dr_{\circ}$$
(8)

由瞬变场参数可以将式(2)改写成

$$\frac{\partial B_z}{\partial t} = \frac{\mu I}{4at} \times \frac{1}{u^2} \times$$

$$\left[3 \operatorname{erf}(u) - \frac{2}{\sqrt{\pi}} u (3 + 2u^2) \operatorname{e}^{-u^2} \right]_{\circ}$$
(9)

把式(2)代入式(4)得电压对电流的归一表达式

$$V(t)/I = \frac{Sn\mu}{4a} \times \frac{1}{t} \times \frac{1}{u^2} \times$$
$$\left[\operatorname{3erf}(u) - \frac{2}{\sqrt{\pi}}u(3 + 2u^2)e^{-u^2}\right]_{\circ}$$
(10)

把式(2)代入式(4)、式(4)代入式(8)得到线性 关断校正的二次磁场感应电压计算公式

$$V_{1}(t) = \frac{1}{t_{0}} \int_{t}^{t+t_{0}} \frac{SnI\mu}{4atu^{2}} \times \\ 3 \operatorname{erf}(u) - \frac{2}{\sqrt{\pi}} u (3 + 2u^{2}) \operatorname{e}^{-u^{2}} \left] \mathrm{d}t_{\circ} \qquad (11)$$

由实际接收数据转化为感应电压对电流归一化 并作积分变换得表达式

$$V_{1}(t)/I = \frac{Sn\mu}{4a} \times \frac{1}{t_{0}} \int_{\frac{a}{2}\sqrt{\frac{t}{t+t_{0}}}}^{\frac{a}{2}\sqrt{\frac{t}{t+t_{0}}}} \frac{4}{\sqrt{\pi u^{2}}} (3+2u^{2}) e^{-u^{2}} - \frac{6}{u^{3}} \operatorname{erf}(u) du_{\circ}$$
(12)

以 W-TEM 为例,经过关断延时校正,其响应 (接收数据)的表达式很复杂,用数值方法反解视电 阻率要很大的计算量,不能作现场的指导。笔者提 出用 BP 网络来解决这一问题。

3 基于 BP 网络的数值计算

神经网络具有自学能力和自适应性,以及较强的稳健性和容错能力,采用并行分布式处理方法,运行速度快,其中的反向传播模型(back propagation, BP),是一种多层结构的前向网络,应用最为广泛。BP 网络具有在数据驱动下,自适应实现非线性映射的能力,有很强的非线性逼近能力^[11]。常规的瞬变电磁数值计算依赖初始模型,迭代速度慢,笔者提出采用 BP 网络的方法,通过简化输入输出向量,使网络具有训练快、计算速度快、精度高的特点。

采用三层 BP 网络,如图1所示,包括输入层、隐 含层和输出层,相邻层间通过权值实现联结。输入 信号通过输入层传播到隐含层,经过激励函数的作 用,将隐含层的输出传播到输出层,得到输出结果。

图1 三层BP网络结构

输出值与期望值之差定义为误差

$$E = \frac{1}{2} \sum_{k} (t_k - o_k)^2, \qquad (13)$$

式中:t_k为期望值;o_k为实际输出值;k为样本数。

式(13)中表示的是单输出向量时的误差。若 k 为输出向量的维数,则 E 表示一个样本训练时的误 差,总的误差为各样本误差之和。

从表达式(10)和(12)对比可以看出,校正内容 为式(10)中除系数 $Sn\mu/4a$ 以外部分,如式(14) 所示。

$$Y = \frac{1}{t} \times \frac{1}{u^2} \times \left[3 \operatorname{erf}(u) - \frac{2}{\sqrt{\pi}} u(3 + 2u^2) \operatorname{e}^{-u^2} \right], \quad (14)$$

$$\frac{V_{1}(t)}{I} \times \frac{4a}{Sn\mu} = \frac{1}{t_{0}} \int_{\frac{a}{2}\sqrt{\frac{\mu\sigma}{t+t_{0}}}}^{\frac{a}{2}\sqrt{\frac{\mu\sigma}{t+t_{0}}}} \frac{4}{\sqrt{\pi}u^{2}} (3+2u^{2}) e^{-u^{2}} - \frac{6}{u^{3}} \operatorname{erf}(u) du_{\circ}$$
(15)

积分变换后的表达式(12)可转换为式(15),下 限为含地层信息的瞬变场参数,实地测量时,发射电 流所对应的关断延时 t_0 是常量,由接收数据可计算 等式左边值,右边积分下限是瞬变场参数 u,上限是 含常量 t_0 的瞬变参数量。可以选择 I,a,t计算等 式左边值与相应的 u 值作为样本进行训练,建立 BP 网络表示的瞬变场参数 u 与可测得值的非线性关 系,再由式(16)求出所要的含地质信息的参数(电导 率),从而避开了复杂的数值计算,实现了快速的 计算。

$$\sigma_{\rm el}(t) = \frac{4tu^2}{a^2\mu} \,. \tag{16}$$

由于大多数瞬变电磁仪器测量接收线圈的感应 电压,而校正表达式中瞬变参数与函数值对应关系 和式(2)中瞬变场参数与核函数对应关系相似,为避 免视电阻率出现多解,可以以核函数的转折点把计 算分成早期与晚期部分,再由转折点拟合一条全程 的视电导率曲线^[12]。也可以先将感应电压转化为 磁场,再计算电导率^[13]。由于被积分部分是已测得 的电压值,感应电压的校正较容易。感应电压转化 为磁场的方法,笔者采用精度较高的梯形法,从最后 延时时刻往前计算各采样时刻的磁场值。

由式(3)、(4)、(16)可得:

$$B_{z} \times \frac{2a}{I\mu} = \frac{3}{\sqrt{\pi}u} e^{-u^{2}} + \left(1 - \frac{3}{2u^{2}}\right) \operatorname{erf}(u) \,. \tag{17}$$

式(15)中左边部分是由感应电压和已知参数组成,右边部分为含瞬变场参数为变量的表达式(B。的核函数),由于右边部分是关于变量的单调函数, 所以不存在多解情况。选用三层 BP 网络拟合反函数关系可求得唯一的瞬变参数,进而由式(16)求得电导率的值。

由于建立了简化的输入输出关系(校正后的电 压表达式值(或 B_a 的核函数值) — 瞬变场参数),在 训练算法上可以选用梯度下降法或其他的改进方 法^[16],有效地提高了算法的收敛速度和精度,主要 有加入动量因子的梯度下降法、自适应调整学习率 算法、弹性 BP 算法、共轭梯度法、拟牛顿法、一步 正割 BP 算法和列文伯格—马夸尔特法算法。设 I=10 A,S=50 m×50 m,n=3,t=0.01~10 ms,a=20 m,由式(15)对网络进行训练,在(0,1)区间 随机选取 100 个值 S_p ,取 $S_p \times 20 + 0.001$,从而得 到电导率在区间(0.001,20)S/m内的随机样本, 关断延时为 8 μ s,计算瞬变场参数 u,由表达式(11) 计算响应值,以响应值为输入, *u* 值为输出,导入 BP 网络进行训练,比较各函数的训练误差,如表 1 所示。

训练步长	训练算法					
	带动量因子	自适应学习率	弹性 BP	正割算法	拟牛顿法	列文伯格 马夸尔特法
50	0.192 16	0.369 01	0.075 91	0.010 963	0.017 95	0.053 43
100	0.167 02	0.213 75	0.052 07	0.008 730	0.009 98	0.032 17
200	0.101 33	0.102 34	0.050 44	0.005 723	0.007 02	0.021 58
500	0.072 41	0.076 08	0.048 85	0.003 751	0.005 36	0.016 76
1 000	0.034 18	0.045 89	0.042 91	0.002 048	0.002 42	0.009 26

1 不同算法训练的误差情况

由表1的误差可以看出正割算法更符合实际应用。在训练网络时,3 000步迭代所用时间为36.594 s(Pentium IV CPU3.0G)。

隐层节点数不仅与输入输出的节点数有关,还 与样本数据的特性有关。若隐层节点数太少,网络 可能根本不能训练或网络性能很差;若隐节点数太 多,虽然可使网络的系统误差减小,但训练时间变 长,还容易陷入局部极小点而得不到最优。为了保 证足够高的网络性能和泛化能力,尽可能避免训练 出现"过拟合"现象,笔者通过仿真作出比较,选择不 同的隐结点进行训练,得到的误差如表 2 所示。选 用参数与误差训练相同,对网络训练 2 000 步。

表 2	不同隐节	点训练的误差情况	Ω・m
-----	------	----------	-----

训练	不同隐节点数					
样本数	5	8	12	16	20	
25	0.002 82	0.006 573	0.003 962	0.007 651	0.006 245	
50	0.001 69	0.017 534	0.017 356	0.018 462	0.017 882	
100	0.017 16	0.021 682	0.002 376	0.053 755	0.024 395	

笔者采用三层 BP 网络,一步正割 BP 算法,隐 含层选 12 个隐单元,随机选取 100 个瞬变响应值及 其响应为样本,经过 5 000 次迭代,得到 3 个网络结 构,分别为计算晚期(0 < u < 1.61)、早期($1.61 < u < \infty$)^[12]电导率及由响应值 B_z 计算电导率。

4 仿真实验

模型为均匀导电半空间,电阻率 $\rho = 100 \Omega \cdot m$, 发射电流 I = 8 A,发射框半径 a = 200 m,关断延时 为 6 μ s,接收线圈有效面积为 100 m²,匝数为 1,采 样时间为 0.02~2 ms。计算感应电压及磁场强度, 计算式(13)、(15)左边值导入 BP 网络求瞬变场参 数 u,代入式(14)求电阻率值。计算情况如图 2

图 2 均匀导电半空间的全程视电阻率

图 2 为视电阻率的计算结果,实线为文中方法 计算;断线为对分法数值计算;点线为牛顿迭代法计 算;点横线表示感应电压转化为磁场后计算的结果。 数值计算方面,为了避免出现双值,笔者采用了早晚 期分别计算的方法。在 $t = 1.28 \times 10^{-5}$,早晚期曲 线的分支相趋近于理论值 $\rho = 100 \Omega \cdot m$,从而与"在 转折点处拟合全程视电阻率"的思想吻合。BP 网络 计算早期与晚期在转折点处与理论值吻合;由磁场 直接计算视电阻率不存在多解,其计算的结果与理 论值、早晚期拟合线相叠加,印证了文献[13]中的 方法。

表 3 列出了一组数据(50个)迭代计算所耗的 时间(Pentium IV CPU3.0G),迭代时最大步数和最 大误差。从表 3 看到,BP 网络计算视电阻率时速度 很快,精度也合乎需要。数值运算时间与计算视电 阻率迭代的次数成正比,而 BP 网络与此无关,显示 了神经网络并行处理数据的优越性。

算法	运算时间	最大迭代	最大误差	平均误差
	/ s	次数	/ %	/ %
BP网络	0.021	—	2.670 9	0.696 3
对分法	378.480	24	1.560 8	0.580 3
牛顿法	671.520	39	0.847 8	0.273 4

表3 3种算法指标对比情况

5 应用实例

实验仪器由重庆奔腾数控技术研究所生产的 WTEM 瞬变电磁发射机,配合美国 GDP-32 多功 能接收机,选取 NanoTEM 参数类型,采用中心回线 装置,接收机时窗记录范围 0.205~1 517 μ s,对某 校地下防空洞进行探测。用神经网络对接收数据进 行处理,测点 p 为横坐标,电导率 σ 为纵坐标,如图 3 所示。

图 3 BP 网络计算断面图

从图 3 看出,在第 10 个测点与第 32 个测点之间出现异常,电导率低于两侧,异常部分位置刚好位于防空洞,与实际情况相符。

6 结 语

常规瞬变电磁视电阻率计算方法复杂,速度慢。 笔者提出用 BP 网络计算电阻率的方法,经过关断 延时校正后确定了单输入输出的网络结构,使得视 电阻率计算既快速,又相对准确,对于瞬变电磁数据 处理的快速解释,有很好的应用前景。但要注意:在 处理早期数据时,二次场感应电压受一次场及周围 环境的干扰,在数据计算时会带来较大的误差,这就 需要在接收装置上有新的改进。

参考文献:

- [1] 牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社,2007.
- [2] YAN L J, HU W B, ZHU L S, et al. Rapid resistivity imaging method and its application for central loop transient electromagnetic sounding [C] // Proceedings of the International Conference on Environmental and Engineering Geophysics, July 6-8, 2004, Wuhan, China. [S. l.]: IEEE, 2004; 337-342.
- [3] YU J C, LIU Z X, TANG J Y. Research on full space transient electromagnetism technique for detecting aqueous structures in coal mines [J]. Journal of China University of Mining & Technology, 2007, 17(1): 58-62.
- [4] YU J C, WANG Y Z, LIU J, et al. Time-depth conversion of transient electromagnetic method used in coal mines [J]. Journal of China University of Mining & Technology, 2008, 18(4): 546-550.
- [5]郭文波,李貅,薛国强,等. 瞬变电磁快速成像解释系统研究[J]. 地球物理学报,2005,48(6):1400-1405.
 GUO WEN-BO,LI XIU, XUE GUO-QIANG, et al. A study of the interpretation system for TEM tomography[J]. Chinese Journal of Geophysics, 2005, 48(6):1400-1405.
- [6] 薛国强,李貅,宋建平,等.回线源瞬变电磁成像的理论 分析及数值计算[J].地球物理学报,2004,47(2): 338-343.

XUE GUO-QIANG, LI XIU, SONG JIAN-PING, et al. Theoretical analysis and numerical calculation of loop-source transient electromagnetic imaging[J]. Chinese Journal of Geophysics, 2004, 47 (2):338-343.

- [7] 徐海浪,吴小平.电阻率二维神经网络反演[J].地球物 理学报,2006,49(2):584-589.
 XU HAI-LANG, WU XIAO-PING. 2-D resistivity inversion using the neural network method [J]. Chinese Journal of Geophysics, 2006, 49(2):584-589.
 [8] 谭永基,王金莲. 用溃传算法计算几个地球物理的反问
- [8] 谭永基,主金莲,用遗传身法计身儿个地球物理的反问题[J].工程数学学报,2005,22(3):427-434. TAN YONG-JI, WANG JIN-LIAN. Calculate the geophysical inverse problems using genetic algorithm[J]. Chinese Journal of Engineering Mathematics,2005,22(3):427-434.
- [9] 闫永利,赵永贵,陈本池,等. 二次电流场多次叠加概率 成像[J]. 地球物理学报,2008,51(5):1544-1550.
 YAN YONG-LI, ZHAO YONG-GUI, CHEN BEN-CHI, et al. Multiple superimposed tomography of probability on second electrical field[J]. Chinese Journal of Geophysics, 2008, 51(5):1544-1550.
- [10] RAICHE A P , SPIES B R. Coincident loop transient electromagnetic master curves for interpretation of twolayer earths [J]. Geophysics , 1981 , 46(1) : 53-64.
- [11] XIA Y S, WANG J. A general projection neural

network for solving monotone variational inequalities and related optimization problems [J]. Transactions on Neural Networks, 2004,15(2): 318-328.

- [12] BAI D H, MEJU M A. All-time apparent resistivity for transient electromagnetic method[C] // Proceedings of the 15th Workshop on Electromagnetic Induction in the Earth, Aug 19-26, 2000, Cabo Frio , Brazil. [S. l.]: IEEE, 2000: 33.
- [13] CHRISTENSEN N B. 1D imaging of central loop transient electromagnetic soundings [J]. The Journal of Environmental & Engineering Geophysics, 1995, 2 (1): 53-66.
- [14] 付志红,周雒维,苏向丰,等. 两种新颖的准谐振型电流

(上接第1092页)

へてっとてっとてっとしてってい

参考文献:

- [1]皮天祥.钢筋混凝土剪力墙小跨高比连梁抗震性能试验 和设计方法研究[D].重庆:重庆大学,2008.
- [2] ACI Committee 318. Building code requirements for structural concrete (ACI318-08) and commentary (ACI318R- 08) [S]. American Concrete Institute, 2007.
- [3] British-Adopted European Standard. EN 1998-1:2004 Eurocode 8: design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings[S]. Bromeliad Society International, 2005.
- [4] National Information Centre of Earthquake Engineering. NZS3101 Newzealand codes, part II: Commentary on the design of concrete structures[S]. National Information Centre of Earthquake Engineering, 1995.
- [5] GALANO L, VIGNOLI A. Seismic behavior of short coupling beams with different reinforcement layouts
 [J]. ACI Structural Journal, 2000, 97(6): 876-885.
- [6]戴瑞同,孙占国. 菱形配筋剪力墙连梁的承载能力[J]. 工业建筑,1993(10):32-38.
 DAI RUI-TONG, ZUN ZHAN-GUO. Load-bearing capacity of coupling beam of shear wall reinforced with inclind rhombic bars [J]. Industrial Construction, 1993 (10): 32-38.
- [7]中国建筑科学研究院. JGJ3-2002 高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2002.
- [8] TEGOS I A, PENELIS G G. Seismic resistance of short columns and coupling beams reinforced with inclined bars [J]. ACI Structural Journal, 1998, 85 (10):82-88.
- [9] KOMIYA Y, NAKATSUKA T, ONAL T, et al. Experimental study on structural charicteristics od diagonally reinforced short span beam [J]. Journal of Structural and Construction Engineering, 2007 (5):

陡脉冲整形电路[J].中国电机工程学报,2006,26(5): 70-75.

FU ZHI-HONG, ZHOU LUO-WEI, SU XIANG-FENG, et al. Two novel quasi-resonant steep current impulse rectifying circuits [J]. Proceedings of the CSEE, 2006, 26(5): 70-75.

- [15] FITTERMAN D V , ANDERSON W L. Effect of transmitter turn-off time on transient soundings [J]. Geophysics Exploration, 1987,24(2):131-146.
- [16] 飞思科技产品研发中心. 神经网络理论与 MATLAB 7 实现[M]. 北京:电子工业出版社,2005.

(编辑 李胜春)

173-180.

- [10] 万鹏,郑凯锋.基于可视化路径的结构混凝土拉-压杆 模型[J].应用力学学报,2004,21(4):125-128.
 WAN PENG,ZHENG KAI-FENG. Strut-and-tie model of structural concrete based on load path visualization
 [J]. Chinese Journal of Applied Mechanics, 2004,21
 (4):125-128.
- [11] 刘清山,梁兴文. 抗震剪力墙小跨高比连梁受剪承载力 的软化拉压杆模型解[J]. 建筑科学, 2008, 24(7):5-9. LIU QING-SHAN, LIANG XIN-WEN. The softening strut-and-tie model method for calculation of shear bearing capacity of deep coupling beams [J]. Building Science, 2008, 24(7):5-9.
- [12] 张彬彬,白绍良.剪力墙小跨高比连梁合理配筋的试验研究[J].建筑科学,2005,21(4):10-15.
 ZHANG BIN-BIN, BAI SHAO-LINAG. Experimental research of reasonable reinforcement of short coupling beams of shear walls [J]. Building Science, 2005, 21 (4):10-15.
- [13] TANG C Y, TAN K H. Interactive mechanical model for shear strength of deep beams [J]. Journal of Structural Engineering, 2004, 130(10):1534-1544.
- [14] ZHAO Z Z, KWAN A K H, HE K G. Nonlinear finite analysis of deep reinforced concrete coupling beams [J]. Engineering Structures, 2004, 26(1):13-25.
- [15] 陈云涛,吕西林. 联肢剪力墙抗震性能研究:试验和理论 分析[J]. 建筑结构学报,2003,24(4):25-34.
 CHEN YUN-TAO, LU XI-LIN. Seismic behavior of coupled shear walls: experiment and theoretical analysis
 [J]. Journal of Building Structures, 2003, 24(4): 25-34.
- [16] 詹霖.采用交叉配筋方案的小跨高比洞口连梁的试验研 究及设计方法[D]. 重庆:重庆大学,2007.

(编辑 赵 静)