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Numerical simulation of nonlinear large-amplitude sloshing
of liquid in rigid container
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Abstract A Taylor-Galerkin fractional step method of two steps with the second order accuracy in time and space was

developed to deal with the 3-D nonlinear large-amplitude sloshing problem. The calculation coordinates was fixed in the

container and the external excitation was regarded as the mass force. According to the method the intermediate velocity

field neglecting pressure gradient term was obtained explicitly and then the velocity field was corrected based on the

pressure field obtained from the pressure Poisson equation. Moreover the Level Set approach was applied to track the

free surface implicitly. During this process the transport equation of the Level Set function was solved in each time step

and the function was reinitialized through the iteration method so that it was maintained as a distance function and the

tracking of free surface was realized. The governing equations of the system were discretized by the two-step Taylor-

Galerkin method which was of high accuracy and easy to be carried out. The validity and reliability of the method were

proved by two numerical examples.

Key words rigid container large-amplitude sloshing Level Set two-step Taylor-Galerkin step finite element method





