U.

ി

材料非线性结构的动态子结构法

樊琨

(上海海运学院计算中心 上海 200135)

摘 要 将 B-H 模态综合法推广到材料非线性体系中,采用子结构凝聚法求解非线性动力体系的 振动响应,方法简捷,求解体积小,是分析非线性动力问题的一种有效方法.算例表明,该方法运行 时间比常规有限元法短,结果可靠.

关键词 动态子结构 非线性 模态综合 注模态

中图号 0343.5;0347

目前,非线性结构体系的动力分析问题日渐增多,分析对象也日渐庞大.对这类问题用有限元法处理时, 要么自由度数目过大、计算费时,要么划分单元粗糙,导致计算精度下降.在线性动力体系中,动态子结构法 已被广泛应用.本文将求解线性问题的 B-H(W.A. Benfield and R.F. Hrauda)模态综合法加以推广,使其适用 于非线性动力体系.将一个庞大结构体系,分为多个子结构,按模态基凝聚,然后对接拼装,使方程阶数大幅 度下降,从而在同样计算机容量下,可对结构作更密的网格划分,以获得较为精确的结果.

1 非线性体系的子结构分析

图 1 为一非线性结构体系,现将其分为 N 个子结构.图中^(α) U_I , ($^{\alpha}U_J$ 分别表示第 $^{\alpha}$ 号子结构的内位移矢量和对接面位移矢量, $^{\alpha}$ = 1,2, $^{\circ}U_{I_1}$, 3,....

对任一 α 子结构 振动方程为

 $\begin{array}{c} (\alpha) m^{(\alpha)} \ddot{U} + (\alpha) C^{(\alpha)} \dot{U} + (\alpha) K^{(\alpha)} U = (\alpha) r(t) \\ \alpha = 1 2 3 r... rN \end{array} \right\}$ $\begin{array}{c} (1) \\ \text{Fig.1 Non-liner structure system} \\ \text{Fig.1 Non-liner structure system} \\ \text{式中} (\alpha) m - - \alpha \text{子结构质量矩阵} (\alpha) C - - - \alpha \text{Fig.n} \\ \alpha = 1 2 3 r... rN \end{array} \right\}$

周期力列矢量 (́ ^{؞)}U——位移列矢量.

式(1)中没有写出对接面上的力,是因为在后面的对接过程中它会自动消去.今后,在不引起混淆的情况 下,有时省去子结构编号"^α".

在土石坝等材料非线性系统中(例如二维三角形单元下^[1]):

$$\mathbf{K}^{e} = \begin{bmatrix} \mathbf{K}_{ii} & \mathbf{K}_{ij} & \mathbf{K}_{im} \\ \mathbf{K}_{ji} & \mathbf{K}_{jj} & \mathbf{K}_{jm} \\ \mathbf{K}_{mi} & \mathbf{K}_{mj} & \mathbf{K}_{mm} \end{bmatrix}$$
$$\mathbf{K}_{rs} = \frac{Gt}{4(1 - \mu^{2})\Delta} \begin{bmatrix} b_{r}b_{s} + \frac{1 - \mu}{2}C_{r}C_{s} & \mu b_{r}C_{s} + \frac{1 - \mu}{2}C_{r}b_{s} \\ \mu C_{r}b_{s} + \frac{1 - \mu}{2}b_{r}C_{s} & C_{r}C_{s} + \frac{1 - \mu}{2}b_{r}b_{s} \end{bmatrix} \qquad r = i \ j \ m \ is = i \ j \ m$$

收稿日期:1997-01-07

作者简介 獎琨 男 博士研究生 水工结构专业 主要从事水工结构的动、静力分析.

$$G = G_{\max} / \left\{ 1 + \frac{\gamma}{\gamma_r} \left[1 + a \exp\left(-b \frac{\gamma}{\gamma_r}\right) \right] \right\}$$
(3)

式(3)中, γ 是随*U* 变化的变量^{3]},其余为常量.可见,在^(α)*C* ($^{\alpha}$)*K* 中均有随*U* 变化的量,此即表现出的材料 非线性. 今将 *K* 分为

$$K = K_0 + K_0 U + K_0 U^2 + \dots$$
 (4)

这种分法总是可行的.在本问题中,将 G 用泰勒级数展开,整理即得式(4).式中 U, U^2 等分别表示位移列矢量、位移的平方列矢量等; K_0 表示常量矩阵.类似地,C也可表示为

$$C^{e} = am^{e} + bK^{e} = am^{e} + bK_{0}^{e} + bK_{0}U + bK_{0}U^{2} + \dots$$

$$C = C_{0} + C_{0}U + C_{0}U^{2} + \dots$$
(5)

式中 :C₀-----与 U 有关的常量部分 ;其余符号意义同前.

将式(4)(5)分别代入式(1)中 整理得

$$m\ddot{U} + C_0\dot{U} + K_0U = r(t) + F(U,\dot{U})$$
(6)

$$(U, \dot{U}) = -(K_0 U^2 + K_0 U^3 + \dots) - (C_0 U \dot{U} + \dots)$$

设 $f = \epsilon R(U, \dot{U}), \epsilon$ 为小参数则式 6)又可表示为

$$m\ddot{U} + C_0\dot{U} + K_0U = r(t) + \varepsilon R(U,\dot{U})$$
(7)

式(7)的 ε 零阶渐近线性齐次无阻尼方程为

$$\boldsymbol{m}\boldsymbol{\ddot{U}} + \boldsymbol{K}_0 \boldsymbol{U} = 0 \tag{8}$$

下面以两部件 a b 为例来讨论 B-H 模态综合法³在本系统中的应用.

从结构体系中选取一个比较坚实的部分作为主体,把与此相连的子结构视为分枝部件.对于主体使用自 由界面(带有各个分枝部件对接加载)主模态,对分枝部件按 Craig 法把它们的运动分解为通过对接附随主体 部分的牵连运动,并以其在对接集上确定的约束模态来描述,而它的相对运动则由固定对接主模态表达.对 于分枝部件,主模态求法如下:

将部件的位形空间 N 分为 E 集(约束) 及它的余集 V,依次静态地给予 E 集中每一位移坐标以单位位 移 ,而强制 E 集内的其余坐标的位移为零 ,如此产生的在空间 N 中的坐标的静态位移响应 ,构成部件 E 集 上确定的约束模态.对于任意选定的 E 集 ,总计有 C 个独立约束模态.当 C > R(刚体自由度)时 ,在 E 集上 有反力集 F_{cc} .由于必须满足部件的 R 个总体平衡方程 ,所以矩阵 F_{cc} 包含 R 度奇异性.当 C = R > 0时 ,反 力转化为零 ,即 $F_{cc} = 0$,而 C 个约束模态退化为以 E 集为基的 R 个刚体模态 ,由此可知

$$\begin{bmatrix} \mathbf{K}_{VV} & \mathbf{K}_{VC} \\ \mathbf{K}_{CV} & \mathbf{K}_{CC} \end{bmatrix} \begin{bmatrix} \mathbf{C}_{VC} \\ \mathbf{I}_{CC} \end{bmatrix} = \begin{bmatrix} \mathbf{\Phi}_{VC} \\ \mathbf{F}_{CC} \end{bmatrix}$$
(9)

可以确定约束模态.

由式(9)的第一分块得 $C_{VC} = -K_{VV}^{-1}K_{VC}$.因此 约束模态矩阵为

$$\boldsymbol{\Psi}_{C} = \begin{bmatrix} \boldsymbol{C}_{VC}^{\mathrm{T}} | \boldsymbol{I}_{CC} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} -\boldsymbol{K}_{CV} \boldsymbol{K}_{VV}^{-1} | \boldsymbol{I}_{CC} \end{bmatrix}^{\mathrm{T}}$$
(10)

求出约束模态后,即可考虑带对接加载的部件主模态了.对部件 b,由前述约束模态作为变换矩阵,得

$$({}^{(b)}\boldsymbol{U}_{I} = \boldsymbol{C}_{IJ} ({}^{(b)}\boldsymbol{U}_{J}$$
 (11)

$${}^{(b)}U = \begin{bmatrix} U_I \\ U_J \end{bmatrix} = \begin{bmatrix} C_{IJ} \\ I_{IJ} \end{bmatrix} U_J = \Psi_C U_J$$
(12)

式中

$$C_{IJ} = -K_{II}^{-1}K_{IJ}$$
(13)

由此,可得到部件b的缩聚质量矩阵、刚度矩阵如下:

$$^{(b)}\boldsymbol{m} = \boldsymbol{\Psi}_{C}^{\mathrm{T}}\boldsymbol{m}\boldsymbol{\Psi}_{C} = (\boldsymbol{C}^{\mathrm{T}}\boldsymbol{m}_{II}\boldsymbol{C} + \boldsymbol{m}_{JI}\boldsymbol{C} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{m}_{JJ}) + \boldsymbol{m}_{JJ}$$

$$^{(b)}\boldsymbol{K} = \boldsymbol{K}_{II}\boldsymbol{C} + \boldsymbol{K}_{II}$$

$$(14)$$

 $(U^{(a)})_{m}$ 和 $(a)_{K}$ 分别表示带部件 b 对接加载的部件 a 的质量矩阵和刚度矩阵 ,于是有

$${}^{(a)}\widetilde{\boldsymbol{m}} = \begin{bmatrix} {}^{(a)}\boldsymbol{m}_{II} & {}^{(a)}\boldsymbol{m}_{IJ} \\ {}^{(a)}\boldsymbol{m}_{JI} & {}^{(a)}\boldsymbol{m}_{JJ} + {}^{(b)}\boldsymbol{m} \end{bmatrix}$$

$${}^{(a)}\widetilde{\boldsymbol{K}} = \begin{bmatrix} {}^{(a)}K_{II} & {}^{(a)}K_{IJ} \\ {}^{(a)}K_{JI} & {}^{(a)}K_{JJ} + {}^{(b)}K \end{bmatrix}$$

$$(15)$$

如此,得 a 带 b 对接加载的主模态 ϕ_{κ} 由下特征值问题确定:

$$(a) (\widetilde{K} - \omega^2 \widetilde{m}) \phi = 0$$
 (16)

对于分枝部件 b 的内位移,可表示为

$${}^{(b)}U_{I} = {}^{(b)}U_{CI} + {}^{(b)}U_{FI}$$
 (17)

式中 $^{(b)}U_{CI}$, $^{(b)}U_{FI}$ 分别表示其牵连位移和相对位移.由于 $^{(b)}U_{CI} = C_{IJ}U_{J}$,所以可写出

$$\begin{cases} {}^{(a)}U\\ {}^{(b)}U \end{cases} = \begin{cases} {}^{(a)}U_{I}\\ {}^{(b)}U_{J}\\ {}^{(b)}U_{I}\\ {}^{(b)}U_{J} \end{cases} = T_{1}^{C} \begin{cases} {}^{(a)}U_{I}\\ {}^{(a)}U_{J}\\ {}^{(b)}U_{FI}\\ {}^{(b)}U_{J} \end{cases}$$
(18)

其中约束模态变换矩阵

$$\boldsymbol{T}_{1}^{C} = \operatorname{diag} \boldsymbol{I} \tag{19}$$

由位移协调条件(a) $U_{I} = (b)$ U_{I} ,可形成主体与分枝部件的耦合变换

$$\begin{cases}
{}^{(a)}U_{I} \\
{}^{(a)}U_{J} \\
{}^{(b)}U_{FI} \\
{}^{(b)}U_{J}
\end{cases} = T_{2}^{C} \begin{cases}
{}^{(a)}U_{I} \\
{}^{(a)}U_{J} \\
{}^{(b)}U_{J}
\end{cases}$$
(20)
$$T_{2}^{C} = \begin{bmatrix}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I \\
0 & -I & 0
\end{bmatrix}$$

把式(18)(20)写成紧凑形式

$$\begin{cases} {}^{(a)}\boldsymbol{U}_{I} \\ {}^{(a)}\boldsymbol{U}_{J} \\ {}^{(b)}\boldsymbol{U}_{I} \\ {}^{(b)}\boldsymbol{U}_{I} \\ {}^{(b)}\boldsymbol{U}_{J} \end{cases} = \boldsymbol{T}_{3}^{C} \begin{cases} {}^{(a)}\boldsymbol{U}_{I} \\ {}^{(a)}\boldsymbol{U}_{J} \\ {}^{(b)}\boldsymbol{U}_{J} \end{cases}$$
(21)

其中

 T_3^C

方程(21)用主体 a 的坐标和分枝部件 b 的固定对接模态坐标完备确定了系统的运动.

一般地,有多个分枝部件时,应将主体对接集按所隶属的各个分枝部件进行分割,并逐次利用方程(18) ~(21)从最遥远的分枝部件起直到所有部件皆耦合好为止.

分枝部件 b 的相对位移^(b)U_{FI},可借助部件模态代入变换,用其固定对接主模态来表示,即

$$^{(b)}U_{FI} = {}^{(b)}\phi_{IK}q_K \tag{22}$$

其中^(b) ϕ_{IK} 由 $\phi_{K} = [\phi_{IK}^{T} | O^{T}]^{T}$ 确定.

主体的物理位移由其加载主模态描述:

$${}^{(a)}U = \begin{cases} U_I \\ U_J \end{cases} = {}^{(a)} \phi_{K} q_K = {}^{(a)} \begin{bmatrix} \phi_{IK} \\ \phi_{JK} \end{bmatrix} q_K$$
 (23)

式中(a) ϕ_K 由式(16)油取.把这两组部件的模态代入变换 组合起来 ,有

$$\begin{cases} {}^{(a)}U_{I} \\ {}^{(a)}U_{J} \\ {}^{(b)}U_{FI} \end{cases} = T_{4}^{C} \begin{cases} {}^{(a)}q_{K} \\ {}^{(b)}q_{K} \end{cases}$$

$$(24)$$

其中

$$\boldsymbol{T}_{4}^{C} = \begin{bmatrix} {}^{(a)}\boldsymbol{\phi}_{IK} & \boldsymbol{0} \\ {}^{(a)}\boldsymbol{\phi}_{JK} & \boldsymbol{0} \\ \boldsymbol{0} & {}^{(b)}\boldsymbol{\phi}_{IK} \end{bmatrix}$$

现在可形成将部件 a 和 b 的无耦合离散坐标变换到耦合系统的坐标的变换矩阵 T_{5}^{c} :

$$\begin{cases} {}^{(a)}\boldsymbol{U} \\ {}^{(b)}\boldsymbol{U} \end{cases} = \begin{cases} {}^{a'}\boldsymbol{U}_{I} \\ {}^{(a)}\boldsymbol{U}_{J} \\ {}^{(b)}\boldsymbol{U}_{I} \\ {}^{(b)}\boldsymbol{U}_{J} \end{cases} = \boldsymbol{T}_{5}^{C} \begin{cases} {}^{(a)}\boldsymbol{q}_{K} \\ {}^{(b)}\boldsymbol{q}_{K} \end{cases}$$

$$\begin{bmatrix} {}^{(a)}\boldsymbol{\phi}_{K} & \boldsymbol{0} \end{bmatrix}$$

$$(25)$$

其中

$$\boldsymbol{T}_{5}^{C} = \boldsymbol{T}_{3}^{C} \boldsymbol{T}_{4}^{C} = \begin{bmatrix} \begin{pmatrix} (a) \boldsymbol{\phi}_{IK} & 0 \\ (a) \boldsymbol{\phi}_{JK} & 0 \\ (b) \boldsymbol{\phi}_{IJ} \begin{pmatrix} (a) \boldsymbol{\phi}_{JK} & (b) \boldsymbol{\phi}_{IK} \\ (b) \boldsymbol{\phi}_{JK} & 0 \end{bmatrix}$$

由对接基等价变换,就可以确定综合问题,经由变换标准手续,对式(1)实施如下变换:

$$M^{C} = T_{5}^{CT} \operatorname{diag}({}^{(a)}m \; {}^{(b)}m \;)T_{5}^{C}$$

$$K_{0}^{C} = T_{5}^{CT} \operatorname{diag}({}^{(a)}K_{0} \; {}^{(b)}K_{0} \;)T_{5}^{C}$$

$$C_{0}^{C} = T_{5}^{CT} \operatorname{diag}({}^{(a)}C_{0} \; {}^{(b)}C_{0} \;)T_{5}^{C}$$

 $\{\mathbf{r}(t) + \varepsilon R(q, \dot{q})\}^{C} = \mathbf{T}_{5}^{CT} \operatorname{diag}^{(a)}\{\mathbf{r}(t) + \varepsilon R(q, \dot{q})\} + {}^{(b)}\{\mathbf{r}(t) + \varepsilon R(q, \dot{q})\}\mathbf{T}_{5}^{C}$ 这样,方程(1)就可以写成

$$M^{C_{q}} + C_{0q} + K_{0q} = \{r(t) + \varepsilon R(q, q)\}^{C}$$

$$(26)$$

$$H (10)$$

$$H (10)$$

$$H (10)$$

此方程是一个非线性方程,但阶数已比原方程降低了很多.

2 综合后非线性方程的求解

综合后,产生的非线性降阶方程(26)可像通常非线性方程求解一样,采用常规的数值方法求解,如用迭 代法或增量法求解.但因为此方程比原系统方程(1)阶数低很多,一般可降为原阶数的20%左右,即可达到 一定的精度要求,可见效率大大提高.

3 数值算例

某面板堆石坝,高100m,静力分析中,分14级模拟施工过程.今取坝中5m坝段进行三维有限元动力分析,计算时,分3个子结构,分别依坝高20m,60m处作分界面.

坝段的有限元网格剖分为 542 个单元 /结点数为 1402 个.其中堆石体单元为 500 个 ,面板单元为 20 个 , 接触面单元为 20 个 ,趾板单元 1 个 ,止水连接单元 1 个.轴施加约束.自由度为 1904 余个.

输入地震信号为 1988 年 11 月 30 日云南澜沧 6.7 级地震,测点距震源为 3.81 km 烈度为 9 度的加速度 时程曲线.计算前 16 s 响应,分 16 个时段,积分时间步长 0.025 s.

模态综合时,主模态坐标选 10 个(各子结构均为 10 个),最后,缩聚为 800 个自由度和 500 个自由度时, 得到坝高 85 m 处一切点的位移时程曲线.仅考虑 x, y 向时程线.如图 2、图 3 所示.

可以看出,采用子结构方法计算非线性岩土力学问题是可行的.结果是可靠的.由于模态综合法的引入, 最终的计算量得到控制,从而节省了时间,同时也节省了内存空间,便于对结构进行加密剖分,达到精细处理 的目的.

x方向位移峰值比较见表 1,y方向位移峰值比较见表 2.

图 3 y 方向位移时程曲线

Fig.3 The displacement curve in direction y with time

T/s	自由度数 n			TT (自由度数 n		
	500	800	1 904	I/s	500	800	1 904
5.66	0.045 855	0.043746	0.042232	5.78	0.047036	0.044872	0.043320
5.68	0.049460	0.047185	0.045530	5.84	0.043775	0.041716	0.040317
5.70	0.051847	0.049462	0.047751	5.86	0.045216	0.043136	0.041644
5.72	0.052638	0.050217	0.048480	5.88	0.046350	0.044218	0.042688
5.74	0.051851	0.049466	0.047755	5.90	0.045845	0.043736	0.042223
5.76	0.049803	0.047512	0.045869	5.92	0.043645	0.041637	0.040197

表1 x 方向位移峰值比较

Table 1 Comparison of pealc values of displacement in direction x

表 2 y 方向位移峰值比较

Table 2	Comparison	of pealc	values of	of displacement	in direction y	,
---------	------------	----------	-----------	-----------------	----------------	---

TT /	自由度数 n			TT (自由度数 n		
I/s	500	800	1 904	I/s	500	800	1 904
5.88	- 0.044 653	- 0.043 099	- 0.040277	6.04	0.045 145	0.043357	0.040721
5.90	0.045879	0.045248	0.042285	6.06	- 0.045374	- 0.043 375	- 0.040927
5.92	- 0.048096	- 0.046 422	- 0.043 383	6.08	- 0.045623	- 0.044 035	- 0.041 152
5.94	-0.048437	- 0.046751	- 0.043690	6.10	-0.045688	-0.044038	- 0.041 211
5.96	- 0.047 965	- 0.046296	- 0.043264	6.14	- 0.044747	- 0.043 190	- 0.040 362
5.98	- 0.046789	- 0.045 161	- 0.042204	6.16	- 0.043 627	- 0.042109	- 0.039352

4 小 结

从以上分析结果可以看出,采用本文方法计算非线性动力问题是可行的,缩并后的结果也是可靠的.由 于进行了缩并,计算量得到控制.此法不仅适用于岩土力学分析计算,而且在航天、航空、海洋平台或码头、支 墩坝等问题上,更具有广阔的应用前景.仅就面板坝而言,计算结果表明,缩聚到原问题自由度的30%左右, (e.

结果仍然良好,将动态子结构用于非线性问题是一个大胆的尝试 ,今后还有待于更深入的研究,

参考文献

1 郑兆昌.非线性系统动力分析的模态综合技术.应用数学和力学,1983 A(4) 567~571

2 顾淦臣.土石坝地震工程.南京:河海大学出版社,1988

3 王文亮 杜作润.结构振动与动态子结构方法.上海 :复旦大学出版社,1985

Dynamic Substructure Method for Material Nonlinear Structure Analysis

Fan Kun

(Computer Center of Shanghai Maritime Univ. , Shanghai 200135)

Abstract The B-H Modal synthesis method is applied to the non-linear dynamic system. The substructure in the cohesive method is used to solve the vibration response of the non-linear dynamic system in the analysis of the non-linear dynamic system. The method has such advantages as simplicity accurate physical concept and small computation volume.

Key words dynamic substructure inon-linear imodal synthesis imain modal

《河海大学学报》征订启事

《河海大学学报》(自然科学版)是以水资源开发、利用与保护为重点的综合性学术期 刊,主要刊登本校在水资源、水文、地质、测量、水利工程、水电工程、水运工程、海洋及海岸 工程、水工结构、工程力学、水力学及河流动力学、岩土工程、计算机科学、电力工程、电子 技术及自动化工程、工业与民用建筑、管理工程、水利经济、环境工程、机械工程等学科方 面的科研成果学术论文、学术讨论、研究动态等学术性文章,可供上述有关专业的科技工 作者及大专院校师生阅读和参考.

本刊创办于 1957 年,是我国水利水电系统的核心期刊,在国内工程技术界和学术界 有较大影响.刊载的文章中,有不少国家科技攻关(重点)项目和各种科学基金资助项目的 研究成果,部分达到了国内领先和国际先进水平,为我国水利、水电、水运工程及其他有关 工程建设的规划、设计、施工和管理提供了科学理论、方法和具体建议,发挥了较大的社会 效益和经济效益,深受工程界和科技界赞许,并于 1989 年分别获得江苏省和全国高等学 校自然科学学报优秀编辑质量一等奖.本刊每逢单月出版,国内外公开发行,邮发代号 28 - 63,每期定价 8.00 元,全年订费 48.00 元.欢迎广大读者在全国各地邮局订阅或直接与 编辑部联系.联系地址:南京市西康路 1 号《河海大学学报》编辑部 邮政编码 210098.

Jereseseseseseseseseseses

5