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Abstract:
vehicle suspension control and detect road irregularities

Road profile information is used to improve

such as potholes. While a great many road profile

Wk HIW . 2021-10-18

H—1EH : LI Zhaojian(1988—) , 5 , i P2 , 1A= T 0, T2+, B0y mA e Auds sl S5 Akt

E-mail: lizhaojl(@egr. msu. edu

estimation approaches exist, they have been traditionally
performed in a single-vehicle setting, which is inevitably
susceptible to vehicle model uncertainty and
measurement errors. To overcome these limitations, this
paper presents a new collaborative estimation framework
that exploits multiple heterogeneous vehicles to iteratively
each vehicle

improve the estimation. Specifically,

combines its onboard measurements (e. g.,

accelerometers and yaw/roll rate sensors) with a
crowdsourced Gaussian process (GP) estimation from the
cloud into a Kalman filter (KF) to iteratively refine the
estimation. The GP is trained from the crowdsourced local
estimations of all prior participating vehicles, which is
then sent to the latest participating vehicle as “pseudo-
measurements” to enhance the onboard estimation. The
resultant local onboard estimation is sent back to the
cloud to update the GP. It is shown that using the GP as
additional pseudo-measurements can iteratively improve
the road profile estimation performance from vehicle by
vehicle. Extensive simulations are performed to show the

efficacy of the proposed approach.

Key words: cloud-based estimation; collaborative

estimation; road profile estimation; Gaussian process

Road profile is one of the most important road
characteristics that has been frequently used (or
to be
, enable comfort-based route planning™ ,
Road
profilers have been conventionally used to measure

proposed used) to
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improve  suspension
contro

and alert road agencies for maintenance.

road profile. However, they are costly to acquire and
limited

with great advances in vehicular

maintain and can provide coverage.

Alternatively,
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telematics, various sensors and communication
modules are deployed in modern vehicles, which can
potentially be exploited for road profile estimation.

Vehicles can thus be used as mobile sensors to

crowdsource road information with great road
coverage'*".
For Instance, vehicle-based estimation

approaches have been extensively pursued to exploit
the onboard measurements along with the underlying
dynamics to reconstruct the road profile”™*"*'. These
approaches can be categorized into two classes:
unknown input observer (UIO) -based and extended
state observer (ESO) -based. The UIO methods
generally aim to obtain a precise and stable model
inverse to estimate the road profile (which is the
input) from the outputs of the system™”. On the
other hand, the ESO methods exploit an augmented
state by treating the road disturbance signal as an
additional state, which is estimated along with the
original states using the commonly used state
observers such as the Kalman filter (KF) for linear
systems and high gain observers (HGO) or extended
KF (EKF) for nonlinear dynamic systems “*'***'.
However, despite the above progresses, these
approaches are based on a single-vehicle setting,
which is thus susceptible to model uncertainty and
measurement errors. To address these challenges, in
this paper, a new collaborative estimation framework
is developed that exploits multiple heterogeneous
vehicles to iteratively improve the estimation. The
proposed approach utilizes the cloud as a central
platform to crowdsource local vehicle estimations
(GP) ™. The

crowdsourced GP is then sent back to the vehicle as a

using  Gaussian  processes
pseudo- measurement to enhance onboard estimation
using a KF. The enhanced local estimate is then
uploaded to the cloud to update the GP. More
specifically, each participating vehicle runs a local
KF-based ESO for simultaneous vehicle state and
road profile estimation. Instead of just using the
available onboard measurements, a crowdsourced
“pseudo- measurement” from prior participating
vehicle estimates is used to enhance the local

estimation. Two types of pseudo-measurements are

considered where in the first case each vehicle uses
the previous estimation of the vehicle as the pseudo-
measurements whereas in the second case, a trained
GP from all prior participating vehicles are used.
Both cases are compared with a benchmark to
demonstrate the superior performance.

This

systematically exploits the estimates from multiple

proposed framework is novel as it
heterogeneous vehicles to both iteratively enhance

onboard estimation and collaboratively  refine
crowdsourced road profile, through the seamless
integration of individual local estimators with the
cloud-based Gaussian processes. First, the model
dynamics and KF design is introduced. Then, the
cloud-based GP regression is investigated whereas the
on-board  estimation

recursive using  pseudo-

measurements for KF is discussed. Finally,

extensive simulation results are expounded.

1 Problem formulation

The aim of this paper is to develop approaches to
efficiently crowdsource road profile from multiple
heterogeneous vehicles. Specifically, given a road
segment (e. g. , defined by two consecutive road mile
markers [ 16]) as illustrated in Fig. 1, the objective of
vehicle-based road profile estimation is to use existing
onboard sensors (e. g. , accelerometers, GPS, yaw
rate, and roll rate) to discover w(s ), the road elevation
as a function of distance in the longitudinal direction (the
s direction in Fig. 1). Here it is assumed that the road
profile is uniformly distributed in the lateral direction (2
directionin Fig. 1). By scaling the distance s with the
vehicle speed, the road profile to be estimated can also
be represented by w(z), a function of time. Consider
the following dynamics that characterizes the underlying

vehicle- road interaction:
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where a1, a5, a3, and x, represent the sprung mass
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Fig.1 A road segment with profile denoted by w(s)

displacement, sprung mass velocity, unsprung mass
displacement, and sprung mass velocity, respectively
(see Fig.2). Here w € R is the road disturbance sig-
nal, which can be modeled as the output of a low—
pass filter whose input is a white Gaussian noise with
unit intensity, i.e. w= aw(z) + be(t) where a and b

are some constants as defined in [17].

Sprung mass M, 4*)61
Suspension k¢
Unsprung mass M -
Tire ke

AR o

Fig. 2 Illustration of a quarter-car suspension model

Thus, by augmenting the road signal w as an
additional state, i. e., Eq. (1) can be rewritten into
the following augmented state-space model

z(k+1)=Azx(k)+ Gy(t)
y(k)=Cx(k)+v(k)

where A, G, and C are appropriate matrices derived

@)

from Eq. (1); » is the white Gaussian noise; and y is
the noisy output measurements. Discretizing the
system with an appropriate sampling time yields the
following discrete state space equations:
z(k+1)=A,x(k)+Gmylk)
y(k)=Cx(k)+v(k)

which can now be used in a KF to estimate the

3

augmented state which includes the road disturbance
signal by the following two steps:
Prediction:
T(Hk—1)=A,x(k—1lk—1)
P(HE—1)=A,P(k—1k—1)A,"+ G.QG;
Correction:
[(k)=P(kk)C"[CP(kk—1)C"+R]"
2(Ak)=x(k—1k— 1)+ T (k) [ y(k)—

Cr(k—1k—1)]
P(kk)=[1—T(£)C]P(klk—1) (4)
The above description is a standard ESO design
and will serve as a benchmark to compare with the
developed collaborative estimation method which will

be discussed next.

2  Cloud-based Gaussian process
regression

In Section 2, road profile estimation with a
In this

estimation

single vehicle using ESO is presented.

section, a cloud-based collaborative
framework is developed to iteratively refine the
estimates from single vehicles. The considered GP-
based collaborative road profile estimation framework

is illustrated in Fig. 3. Specifically, each participating

vehicle i receives a Gaussian process (GP)
GP,.,l(m,»,l(s),K,.,l(s,.s')l@,-,l)with a mean
function  m, (s) and a kernel  function

K,»,1<s, s/)parameterized by @,»,1, from the cloud.
The GP model describes the road profile distribution

(with both mean and covariance) , aggregated from
the data of prior participating vehicles until vehicle i —
1. The received GP; (-, +|®; ,)is then utilized as a
priori “pseudo-measurement” of the road profile,

forming an augmented output along with the onboard

Y= [y? w; 1},
w, ~GP, (-, «|@,_,). This augmented output is

measurements as where

then incorporated into a local estimator (e.g., KF
or JDP-based estimator) to estimate the augmented
state (both vehicle state and road profile). This GP
“pseudo-measurement” can be viewed as an
additional sensor measurement, providing both the
means and the covariances of the road profile to be
fused with onboard sensors for enhancing the local
estimation. The pair of road profile and position
estimate ~ sequence, (721{, 3}): ={w, §,}Nis then
uploaded to the cloud to update the GP hyper-

parameters using e. g. , maximum likelihood learning :
©,= argmax Prob(w, (§,), w,(5,), -+,
[}

~

wi(g‘i)‘g‘l’ -;‘Z’ o

* §1’9@) (5)
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Fig. 3 Schematics of collaborative estimation using

GP

The updated GP with hyper-parameters @,
GP,(s, -

vehicle /41 to enhance its estimate. The process is

O,)is then sent to the next participating

then repeated.

In the presented framework, N number of
vehicles are considered which can collaboratively
improve the estimation of the road disturbance signal
from vehicle to vehicle. When Vehicle i passes the
considered road segment, it will pass its KF
estimation information of the road disturbance signal
to the cloud which has the capability of storing large
data structures and dealing with heavy computations.
On the cloud side, the road profile estimations of
Vehicle 7 and all prior participating vehicles are used
to fit a GP to characterize the road disturbance. The
goal is that as more vehicles collaborate in the
proposed estimation framework, the estimation error
for the cloud-based GP and for the vehicle on-board
Next,
provided regarding the GP and the collaborative

estimation 1s reduced. more details are
estimation framework.
The road profile can be described by a function

of the spatial distance, w(s), or characterized by its

power spectrum density ™. An alternative
description is from a machine learning perspective
using the GP  model [19] , i e,

w(s)~GP(m(5), k(s, 5’)), where m (s)=E[w(s)]

is the mean function that can take the form of m (s)=
K

> Bi(s)=B"¢(s), where ¢( + ) is the vector of K

=

basis functions (e. g., polynomial functions or

Gaussian basis functions) , and Bis the vector of
corresponding linear weights to be trained from the
data. The kernel function, /e(s, s'):Cov(s, s'),
characterizes the covariance between any two spatial
of which 1s the

. U
pointssands', an example

exponentiated —quadratic kemel/e(s, .s’):azexp —

,2
Eintd

o7 , where ¢ and / are the hyper-parameters

representing the standard deviation and the length
scale, respectively. The set of hyper-parameters
from the mean function and the kernel function
(e. g, @Z{ﬂ, o, Z} are denoted by © for the above

example functions). This GP representation of road
profile is advantageous as it not only provides an
estimated profile (i. e., the mean function) but also
the estimation uncertainties characterized by the
kernel function.

In this paper, GP is used to predict and update
the spatial function values of the road disturbance
More

specifically, Vehicle i passes the considered road

signal for a considered road segment.

segment and sends its KF estimation points
{5, w, 1" to the cloud, where (5’,-, ‘iu,-) is the sequence
of the estimated road signal points. Gathering all the
estimated values for the road signal up to Vehicle 7,

the training data points for the cloud-based GP will be
D={(s. ), (§0@.), . (5uw)f.  In

regard, the input and output training data matrices

this

can be written by stacking the data points obtained by
each KF for Vehicle 1 to Vehicle i as S=
[ §1, 80, ....8, ] and Wz[zbl, Woy ... 7?0,} respectively.
The objective is to approximate the nonlinear
mapping of a system
w,=f(s)+e (6)
with white additive Gaussian noise €~ N ( 0,0, )
Given a GP prior, it follows that the output data is a
related normal distribution
W~N(0,K+ o) @)
With the tuned hyperparameters of the kernel and

mean function, predictions can be made by posterior
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inference conditional on observed data D. Using these
information, the predictive equations for the ith GP

regression at points s. follow as
w(;P,,‘:E[w*‘g, W, SxJ:K(S*,S\)[K(S,SA)AF

oI W (8)
Cov(wer.)=K(s.,5.)— K(5.,S)X[ K(S,8)+

s T 'K(S,s.) (9

The proposed cloud-facilitated collaborative

estimation with GP has several advantages. First, it
works for heterogeneous vehicles as the framework
has no requirement in vehicle homogeneity. Each
vehicle exploits its own model and an estimator for
Second, the

measurement” scheme is guaranteed to reduce the

local  estimation. “pseudo-
estimation variance from iteration to iteration thanks
to the posterior covariance reduction update in
KF:Z()]

road estimate is communicated, privacy-sensitive

Finally, as the only information regarding

information such as vehicle states are inherently
protected. The GP crowdsources the estimates from
multiple vehicles to iteratively improve the road
profile estimation, which is then shared with
participating vehicles to enhance its onboard state and

road estimation.

3 Cloud-assisted onboard estimation
with pseudo-measurements

In this section, the idea of pseudo-measurement
from the cloud as an additional measurement is
presented to enhance the local estimation
performance. In particular, two types of pseudo-
measurements are considered. The first is to use the
KF from the last vehicle as the pseudo-measurement
while the second is to use the crowdsourced GP as the
pseudo-measurement.

3.1 KF pseudo—measurements

When Vehicle 7 passes a road segment, the KF
for Vehicle 7 uses the KF estimation of Vehicle
i — las extra measurements 1. e., the output y for
Vehicle 7 will be modified as

az,(k)ﬂ,(k)]
‘th’,'fl(k)

The modification of the output of the KF for
Vehicle i results in the modification of the KF
algorithm as well. That is, a new measurement noise
covariance for Vehicle 7 1s defined by taking account
of the variance of the road signal estimation error of
the prior Vehicle i — 1 at each time step. This can be
formulated as a KF with augmented pseudo-
measurements as

Prediction:

Z,(HE—1)= A,z (k—1k—1)

P, (kk—1)=A,P(k—1k—1)A}+ GC.QG]
Correction:

R, (k)]
z, (k)= (k—1k— 1)+ T (&) y.(£)—
Cr.(k—1k—1)]
P,(kk)=[1—T,(£)C1P,(kk—1)
(10)
where C and R are the modified output matrix and

modified measurement noise matrix respectively, 1. e.

C:[o 0 g 0 J’R(/{):Fg Gfo(k)}

and o (k) stands for the variance of the road

disturbance signal estimation error of the KF for
Vehicle i—1 at the time step 4. This recursive
scheme will lead to a better estimation of the road
profile as each vehicle travels the road segment as
shown in the simulations.

3.2 GP pseudo—measurements

the KF for each vehicle will
latest GP

regression as the pseudo-measurements for the road

In this case,
incorporate  the information of the
profile estimation purpose. Specifically, the output

measurement for Vehicle 7 1s modified as

Cz,(k (k
yi(/e):{ JA( )+, ( )}
Wep,i—1 ( k )
Similarly, the KF for Vehicle iwill be

augmented with GP pseudo-measurements as the

previous case, where R in this case 1s equal to

— R O
R(/e)Z{o VAR(w,, (@)}

where VAR (w,(k)) stands for the variance of the

road disturbance signal estimation error obtained by
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the latest GP regression done at the cloud at iteration
number7 — 1. In Section 5, how these two types of
extra measurements will lead to better performance of
the on-board KFs in will  be
It s that the proposed

framework will still work if a nonlinear plant model is

each vehicle
demonstrated. noted
used. In this case, instead of using KFs, nonlinear
observers such as EKFs and high-gain observers can

be used for local estimations.

4 Simulation

for the
proposed collaborative estimation framework are
N=5

model

In this section, simulation results

presented.  Specifically,

with  different

heterogeneous
vehicles parameters — are
considered. The parameter values for constructing
the A and G matrices in Eq. (2) for each vehicle i =

1, ---, Nare

90 +i
= >< - ) — oo
M, =300 X( 100 kg, i=1,---,N,
M, = 60kg
621000&
m

90—+i, N

k... =16 000 X( 100 )E’

i=1,-,N, kb= 19OOOOE
m
a=—0.01,6=0.0328

where the C matrix is also chosen as
[1 0O 0 0 O}
1 0 —1 0 O

which corresponds to the measurements of sprung

C:

mass displacement and suspension deflection that are
available in (semi-)active suspension systems.

In the simulations, all participating vehicles
travel through a road segment of 5m in length at the
same speed. This results in the correspondence of the
estimated points of each vehicle obtained by the KF
algorithm. The actual road profile was generated
based on a Class-C road'” . The measurement noise
v, for each vehicle is generated in a way that the
signal-to-noise ratio 1s between 10 and 20. For the
cloud-based GP, the initial GP prior is defined with a

zero mean function and squared exponential (SE)

covariance function, 1. e.
2
.
_ 2
K(-Sn Sj>— i eXp(ZZZ)

In this equation, the hyperparameter o/ stands

(1D

for the signal variance or the vertical scaling factor
whereas the hyperparameter is known as the
horizontal scaling factor. In other words, the distance
that 1s needed to move along the specified axis in the
input space so that the function values become

uncorrelated”’ . The parameter r is the distance

[22]

measure of the inputs and equals to r:‘ Si—S;

For the GP regressions, there are 3 approaches
to calculate Eqs. (8) and (9). The first approach is
that, for the /th GP, all the estimation data of the KF
up to vehicle number 7 is used as the training points
and then the posterior is inferred given all the
collected data. The second approach is to similarly
collect all the data up to Vehicle 7 but instead use a
sparsity approximation GP approach. The last one is
to use an updating recursive approach'®’ where for the
new arriving data, the GP will infer the posterior
distribution given all the previous data without taking
account of all the collected data to construct the
matrices in Egs. (8) and (9) which will cause a
heavy computational burden if there are a lot of
training data points. In this preliminary study, the
first approach is used as the number of considered
vehicles are small and the implemented approach does
not impose heavy computational burden. Other
approaches will be considered in the future.

The performance of the proposed recursive KF
for Vehicles 1 to 5 when exploiting the KF pseudo-
measurements from the prior vehicle is compared with
the benchmark case, 1. e. , without using the pseudo-
measurements. The results are shown in Figure 4a
and 1t 1s clear that using this extra measurement can
reduce the root mean squared error (RMSE) of the
estimated road profile. This extra measurement is
helpful for the KF algorithm to have a better
estimation in general and the variances of the
estimation error decreases from vehicle to vehicle.
Fig. 4b shows the mean and variance of the road
profile estimation error when comparing Vehicles 1
and 5, which shows that a lower mean and variance is
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achieved in the last vehicle (Vehicle 5) as compared
to the Vehicle 1.

RMS error / 107

8
6
Pl Augmented KF with pseudo-measurements
5 —a—KF vyithout pseudo-measurements

1 2 3 4 5
Vehicle number

a RMSE of the on-board KFof the vehiclewith respect to the
actual road with and without using pseudo-measurements

0.06

Vehicle 1 error variance

0.04 — Vehicle 1 error mean
Vehicle 5 error variance

—— Vehicle 5 error mean

0.02

Profile estimation error

0 1 2 3 4 5
z/m

b mean and variance of the estimation error at each road
profile coordinate

Fig.4 Onboard estimation performance estimation

Fig. 5 - Fig. 7 summarizes the performance of the
pro- posed recursive KF when exploiting the latest GP
pseudo- measurements as pseudo-measurements. Fig. 5
is a comparison of the GP pseudo-measurement case
and the benchmark setting where each vehicle performs
the KF without using the pseudo-measurements. It is
clearly observed that using pseudo-measurements brings
about a superior performance. For the KF using pseudo-
measurements, after Vehicle 4 the error does not
decrease much. This is due to the fact that after certain
number of vehicles, the GP will fit a curve to the road
profile which has a low variance and the next KF (that
is, the KF for Vehicle 5 which uses the GP pseudo-
measurement ) will be more likely to trust the latest GP
pseudo-measurement rather than the process dynamics.
Going one step before, on the GP side, this is the result
of using the training data points originated from the
KFs

measurements. This iterative use of the information of

previous augmented with  GP  pseudo-
GP for the KF estimation of road profile and the use of
GP of the estimation of KF, is the reason that eventually
both KF and GP predictions converge to a single road
profile and the improvement will be halted. Ongoing

research 1s on the development of new ideas to enhance

the current result.

10
T 8
=
g 6 —a—individual KFs
- —=—KF with GP ps-m
1
2 1 1 1 1
1 2 3 4 5

Vehicle number
RMSE of the on-board KF of the vehicle with

respect to the actual road with and without

Fig. 5

using pseudo-measurements

0.05
g 0.04
o 003
<
£ 002
&
o 0.01
=)
= 0
var for V1
'§ -0.01 El var for V5
™ actual road
-0.02 —— mean for V1
— mean for V5
003, 1 2 3 4 5
z/m

Fig. 6 First and last GP regression

Fig. 6 is a comparison of the first cloud-based
GP regression and the last one. In addition to
reduction of the variance from the first to the last
vehicle, the improvement of the mean function,
which is the prediction of the GP of the road profile,
is significant. In Fig. 7, the cloud based RMSE of the
GP regression with the actual road profile for GP fit
number 7 1s compared with the average of KFs up to
Vehicle 7, used as a benchmark. The results show a
clear superiority of the GP regression, resulting in a

lower RMSE of road profile for all vehicles.

9 -
8 —a—average of KFs
@ —a—Cloud-Based GP
s 7r
S
5 st
2]
z '
Y — - .
3F - -
2 1 1 1 1
1 2 3 4 5

Vehicle number
Fig. 7 Comparison of the cloud-based GP and the

benchmark setting
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5 Conclusion

In this paper, a novel cloud-based collaborative
road profile estimation framework using multiple
heterogeneous vehicles was developed. GP was used
to crowdsource individual estimates, which was then
used as pseudo-measurements for future vehicles to
enhance its local measurements. This pseudo-
measurement was able to greatly enhance the local
The

estimation was then uploaded to the cloud to update

estimation  performance. enhanced local

the GP estimation. Future work will focus on dealing
with GPS imprecision and data-efficient GP to make

this framework more practically viable.
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