首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度模糊聚类与DGVF模型分割颈动脉超声造影图像
引用本文:张麒,黄春春,韩红,李超伦,王文平. 基于多尺度模糊聚类与DGVF模型分割颈动脉超声造影图像[J]. 上海大学学报(自然科学版), 2014, 20(5): 633-644. DOI: 10.3969/j.issn.1007-2861.2014.01.016
作者姓名:张麒  黄春春  韩红  李超伦  王文平
作者单位:1. 上海大学 通信与信息工程学院, 上海 200444; 2. 复旦大学附属中山医院 超声诊断科, 上海 200032
基金项目:上海市自然科学基金青年资助项目,上海市教委人才计划“晨光计划”资助项目,上海市教委科研创新基金资助项目
摘    要:
超声造影(contrast-enhanced ultrasound, CEUS) 图像在血管疾病诊断与治疗中有很高的应用价值, 其中通过提取颈动脉CEUS 图像中的血管边界对血管形态及弹性等属性进行测量具有重要意义. 由医生手工勾勒血管轮廓耗时耗力, 且重复性差、主观性强, 而传统计算机分割方法因受到图像中斑点噪声的干扰而存在鲁棒性差和初始化难两大问题. 首先, 结合多尺度模糊聚类方法与粒子群优化算法提取血管的粗略轮廓, 以此作为方向梯度矢量流(directional gradient vector flow, DGVF) 模型的初始轮廓; 然后, 对轮廓进行形变收敛至最终结果. 通过分割来自14例患者的48张颈动脉CEUS 图像的实验, 结果表明所提出的方法优于传统方法, 能自动、精确地提取颈动脉CEUS 图像中的血管边界.

关 键 词:超声造影  多尺度分析  方向梯度矢量流模型  模糊C均值聚类  血管轮廓  
收稿时间:2013-11-22

CEUS Image Segmentation of Carotid Arteries Using Multi-scale Fuzzy Clustering and DGVF Model
ZHANG Qi,HUANG Chun-chun,HAN Hong,LI Chao-lun,WANG Wen-ping. CEUS Image Segmentation of Carotid Arteries Using Multi-scale Fuzzy Clustering and DGVF Model[J]. Journal of Shanghai University(Natural Science), 2014, 20(5): 633-644. DOI: 10.3969/j.issn.1007-2861.2014.01.016
Authors:ZHANG Qi  HUANG Chun-chun  HAN Hong  LI Chao-lun  WANG Wen-ping
Affiliation:1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China; 2. Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Abstract:
Contrast-enhanced ultrasound (CEUS) is of great value for the diagnosis and treatment of vascular diseases. Extraction of carotid arterial contours is important for the measurement of morphological and elastic properties of arteries. Since manually tracing of arterial contours is time-consuming, subjective, and unrepeatable, computer-aided methods are required. However, speckle noise in the CEUS images causes poor robustness and difficult initialization in traditional computer-aided image segmentation methods. This paper integrates multi-scale fuzzy C-means clustering with particle swarm optimization to extract coarse boundaries of carotid arteries. Then boundaries are used as initial contours of the directional gradient vector flow (DGVF) model, and deform them until convergence to get final refined contours. Experimental results on 48 CEUS images from 14 patients show that the proposed method is superior to the traditional method, and can automatically and accurately extract boundaries of carotid arteries in CEUS images.
Keywords:contrast-enhanced ultrasound (CEUS)  vascular contours  multi-scale anal-ysis  fuzzy C-means (FCM) clustering  directional gradient vector flow (DGVF) model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《上海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号