小湾拱坝的地震反应分析

谢能刚

(河海大学土木工程学院 南京 210098) (浙江水利专科学校 杭州 310016)

王德信

(河海大学土木工程学院 南京 210098)

摘 要 在对小湾拱坝的三维系统进行地震分析中,考虑坝体与库水的耦合作用,分别采用线弹性 模型及非线性模型进行计算,得到了系统的自振特性及动力反应结果.结果表明 坝水耦合作用提 高了坝的整体质量,降低了自振频率,伸缩横缝削弱了拱坝的整体刚度,对拱坝地震反应产生较强 的非线性影响.

关键词 坝水耦合作用 振型叠加法 闫振特性 地震反应

中图号 TV642.4

拱坝一般是支承在非均质岩石地基上,边界形状比较复杂的空间超静定结构,它的地震反应分析是拱坝 抗震设计中复杂而又重要的内容,长期以来成为坝工建设中的难点.高拱坝的空间尺度大,坝体上的各点之间存在相位差,使得地震的输入方式显得较为困难,采取逐步时程积分法在时域中求解动力反应有明显的不足.对于高拱坝,采用振型叠加法求解地震反应较为合理,且工作量小.

1 拱坝的动力分析模型

1.1 坝-水动力耦合作用

当大坝受到地震运动激励时,坝基随着地震产生刚性位移,同时大坝还发生弹性位移,因而产生库水对 坝体的动水压力(包括刚体位移加速度和弹性位移加速度产生的动水压力).而动水压力又影响着坝的弹性 位移加速度,所以它们相互影响着.这就需要把坝体和水体作为一个整体进行动力反应分析.

考虑坝-水耦合作用的动力平衡方程式1]

 $(M + M_p)\ddot{u}(t) + \dot{Cu}(t) + Ku(t) = -(M + M_p)\ddot{Gu}_g(t)$ (1)

式中: M_p ——动水压力引起的附加质量矩阵;G——地震加速度 3 个分量到 n 个自由度体系的转换矩阵; $\ddot{u}(t)$ ——地震加速度.

 1.2 拱坝系统的自振特性 拱坝系统的无阻尼自由振动方程

$$\begin{aligned} \ddot{My} + Ky &= 0 \\ y &= \Phi Y \end{aligned}$$
(2)

令

式中 :**Φ**----- 拱坝系统振型 ;**Y**----- 模态坐标. 其对应的特征方程为

$$\mu \mathbf{K} \boldsymbol{\Phi} = \mathbf{M} \boldsymbol{\Phi} \tag{3}$$

式中 μ 为特征值 ,自振频率 $\omega = \frac{1}{\sqrt{\mu}}$. 用下式求出 μ 和 $\boldsymbol{\Phi}$.

收稿日期:1998-09-29

第一作者简介:谢能刚,男,博士研究生,水工结构专业.

$$\mu_{j}^{k} = \frac{\left(\boldsymbol{\Phi}_{j}^{k-1}\right)^{\mathrm{T}} \boldsymbol{M} \boldsymbol{\Phi}_{j}^{k-1}}{\left(\boldsymbol{\Phi}_{j}^{k-1}\right)^{\mathrm{T}} \boldsymbol{K} \boldsymbol{\Phi}_{j}^{k-1}}$$

$$\mu_{j} \boldsymbol{\Phi}_{j}^{k} = \boldsymbol{K}^{-1} \boldsymbol{M} \boldsymbol{\Phi}_{j}^{k-1} - \sum_{l=1}^{j-1} \frac{\mu_{l} \boldsymbol{\Phi}_{l}^{\mathrm{T}} \boldsymbol{M} \boldsymbol{\Phi}_{j}^{k-1}}{\boldsymbol{\Phi}_{l}^{\mathrm{T}} \boldsymbol{M} \boldsymbol{\Phi}_{l}} \boldsymbol{\Phi}_{l}$$

$$(4)$$

式中 :*j*——第 *j* 阶特征值或特征向量 ;*k*——第 *k* 次迭代.

1.3 振型叠加法

动力平衡方程

$$\ddot{Wy}(t) + \dot{Cy}(t) + Ky(t) = p(t)$$

$$y(t) = \Phi Y(t)$$
(5)

利用 可得

$$M\Phi\ddot{Y}(t) + C\Phi\dot{Y}(t) + K\Phi Y(t) = p(t)$$
(6)

上式左乘 $\boldsymbol{\Phi}_n^{\mathrm{T}}$,由振型正交性得

$$\boldsymbol{\Phi}_{n}^{T}\boldsymbol{M}\boldsymbol{\Phi}_{n}\ddot{Y}_{n}(t) + \boldsymbol{\Phi}_{n}^{T}\boldsymbol{C}\boldsymbol{\Phi}_{n}\dot{Y}_{n}(t) + \boldsymbol{\Phi}_{n}^{T}\boldsymbol{K}\boldsymbol{\Phi}_{n}\boldsymbol{Y}_{n}(t) = \boldsymbol{\Phi}_{n}^{T}\boldsymbol{p}(t)$$
(7)
化简得第 *n* 阶振型的单自由度方程^{2]}

$$\boldsymbol{M}_{n}^{*} \ddot{Y}_{n}(t) + \boldsymbol{C}_{n}^{*} \dot{Y}_{n}(t) + \boldsymbol{K}_{n}^{*} Y_{n}(t) = p_{n}^{*}(t)$$
(8)

式中 : $M_n^* = \Phi_n^T M \Phi_n$ ——第 *n* 阶振型的广义质量 ; $C_n^* = \Phi_n^T C \Phi_n$ ——第 *n* 阶振型的广义阻尼 ; $K_n^* = \Phi_n^T K \Phi_n$ ——第 *n* 阶振型的广义刚度 ; $p_n^*(t) = \Phi_n^T p(t)$ ——第 *n* 阶振型的广义荷载.

利用数值积分法求解式(8)得 $Y_{1}(t),Y_{2}(t),...,Y_{3}(t)$ 再利用振型叠加得位移反应

$$u(t) = \Phi_1 Y_1(t) + \Phi_2 Y_2(t) + \dots + \Phi_N Y_N(t)$$
(9)

1.4 伸缩横缝对拱坝的动力影响

拱坝在静水压力作用下各坝段间伸缩横缝被压紧,发挥拱的作用,在强烈地震作用下,拱坝的拱冠附近 由于动力放大效应而产生很大的横向应力,抵消静态压应力而使抗拉能力极弱的伸缩横缝开裂而张开,并随 着交变的地震作用不断张开闭合.伸缩横缝的张合,削弱了拱坝的整体刚度,使拱坝的地震反应成为一个复 杂的非线性动力分析问题.分析计算采用三维非线性接缝单元及子结构的动力分析方法*.小湾拱坝坝体的 实际伸缩横缝有 48 条,本文模拟拱冠部位的 3 条是为了说明横缝的张合对动力数值分析的影响.

2 小湾拱坝地震反应分析

2.1 基本资料

拟建的小湾拱坝 坝高 292.0 m,其体型参数由设计单位给出.上游正常蓄水位 1 240.0 m,水库运行低水 位 1181.0 m,坝体混凝土静弹模为 21.0 GPa 动弹模取静弹模的 1.3 倍,泊松比取 0.18,重度为 24 kN/m³.利用 衰减三角级数叠加模型人工生成地震波,采取两向输入方式(顺河向、横河向)峰值加速度调至 0.308 g.

2.2 计算结果

2.2.1 自振频率

从表 1 看出 (a)动水附加质量提高了坝的整体质量,使得正常蓄水位的自振频率较运行低水位小; (b)伸缩横缝对坝体的影响比较显著,它的张合,削弱了拱坝的整体刚度,降低了自振频率.

Table 1 Free-vibration nequency of Alaowan aren tah									
水位	模型	ω_1	ω_2	ω_3	ω_4	ω_5	ω_6	ω_7	ω_8
运行低水位	线弹性	7.4588	7.9914	8.4868	9.9106	10.7882	11.3979	11.9679	12.4919
	非线性	3.3545	3.7211	4.0966	4.4451	4.9796	5.5533	6.1215	6.8456
正常蓄水位	线弹性	6.2733	6.6730	6.9355	7.7865	8.8670	9.4532	9.7019	10.2077
	非线性	2.0374	2.6028	3.0345	3.6679	4.1215	4.5769	5.2316	5.7865

表1 小湾拱坝自振频率

vibration from one of Viaowan arch da

* 陈厚群,侯顺载等.小湾拱坝抗震设计地震反应研究报告.中国水利水电科学研究院,1995

2.2.2 地震反应

小湾拱坝正常蓄水位拉应力等值线如图1所示.

图 1 正常蓄水位上游面最大动拉应力等值线

Fig.1 Isopleth of the largest dynamic tensile stress of upstream side at normal reservoir water level

Table 2 Seisine response results of Alabwan arch dam									
水位	模型 -	最大动应力/MPa		最大顺河	向位移/cm	最大横河向位移/cm			
		拉应力	压应力	向下游	向上游	向右岸	向左岸		
运行低水位	线弹性	7.121	- 7.233	3.1721	-2.7066	0.2230	-0.2155		
	非线性	8.712	- 8.556	3.8656	- 3.3364	0.1928	- 0.1632		
正常蓄水位	线弹性	6.104	- 6.096	2.4217	-2.2130	0.2677	-0.2966		
	非线性	7.427	- 7.469	2.9435	-2.5689	0.2448	-0.2600		

表2 /	∖湾拱坝地震反应结果

Table	2	Seismic	response	results	of	Xiaowan	arch	dan

地震反应结果表明(a)顺河向地震对拱坝的地震反应起主要影响,横河向地震对拱坝的影响较小; (b)坝的中上部地震反应强烈,应力与位移的最大值均出现在拱冠处(c)正常蓄水位时顺河向位移和动应力 值较运行低水位小,横河向位移较运行低水位大.

3 结 论

a. 振型叠加法分析拱坝的地震反应,能够求得比较准确的各阶自振特性与 3 个方向的振型参与系数, 清楚地看到每一阶振型的影响,同时,振型叠加法能较多地节省计算时间.

b. 小湾拱坝的自振频率分布较为密集,拟采用较多(大于8阶)的振型将会更准确地反应地震对拱坝的 影响. **c.**由于动水附加质量的影响,减弱了顺河向地震的效应,增强了横河向地震的影响效应,因而降低了坝的顺河向位移和动应力,增加了横河向位移.

d.3条伸缩横缝的设置,使得拱坝存在弱面,造成应力分布不均匀及应力区集中在拱冠附近.

1 赵光恒.结构动力学.北京:中国水利水电出版社,1996.156~160

2 顾淦臣.土石坝地震工程.南京 ;河海大学出版社,1989.85~95

Seismic Response Analysis for Xiaowan Arch Dam

Xie Nenggang

(College of Civil Engineering ,Hohai Univ., Nanjing 210098)

Gao Jian

(Zhejiang Water Conservancy College , Hangzhou 310016)

Wang Dexin

(College of Civil Engineering ,Hohai Univ. ,Nanjing 210098)

Abstract With consideration of the coupling reaction between the dam and the reservoir water ,by use of the linear elastic model and the non-linear model separately ,the seismic responses of the 3-D system of Xiaowan arch dam is analysed ,and the characteristics of free-vibration and seismic response results of the system are obtained. The coupling reaction between the dam and the reservoir water improves the whole quality and reduces free-vibration frequency of the dam. The presence of lateral contraction joints weakens the whole rigidness and exerts strong non-linear effect on the dam.

Key words coupling reaction between the dam and the reservoir water ;modal superposition method ;character of freevibration ;seismic response