5146 5453 IR R A2 (A SRR Vol. 51, No. 3
202246H Journal of Shanghai Normal University (Natural Sciences) Jun. , 2022

DOI: 10.3969/J.ISSN.1000-5137.2022.03.021

Dynamic behavior of commensal symbiosis system
with both feedback control and Allee effect
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Abstract: The dynamic behavior of commensal symbiosis system with both feedback control and
Allee effect is complex. In this paper, the influence of additive Allee effect on the dynamical
behavior of the system has been studied based on the feedback control commensal symbiosis system.
It is proved that the conditions for the existence of positive equilibrium point are sufficient to ensure
the global attractive of the system. By constructing an appropriate Lyapunov function, the sufficient
conditions for the global stability of the equilibrium point are obtained. The research shows that
Allee effect does not affect the stability of the equilibrium point of the feedback control biased
commensal symbiosis system, but affects the position of the equilibrium point.
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1 Introduction

Human interference with biological resources forms a population model with feedback control. Since
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GOPALSAMY et al "' proposed the autonomous single species feedback control model, many scholars have
carried out research on the feedback control model. HAN et al””’ studied the commensal symbiosis model with
feedback control, but the author did not consider the influence of Allee effect on the population.

Allee effect, which exists in many endangered species. The research on dynamic behavior of biological

[3-6

population model with Allee effect has also become a new hotspot *®. Most of the studies consider both

1L7—9,

feedback control and Allee effect are only in the single population mode , and they have mainly aimed at

the predator-prey system, while there are few studies on the biased symbiotic system considering Allee effect.
Therefore, on the basis of [2], this paper adds the additive Allee effect, and proposes the following

biased commensal symbiosis model with feedback control and Allee effect :

dx a
i b,—a,x— Ti—y +a,xy—c xu,

d

(T); =y(b,—a,y)—c,yv, ()
d

T[; =—putq,x,

dv
dr =—p,vtq,y,

where, b, c;, p., q;, a;(i, j=1,2) are all positive constants, x, y represent the densities of the two

iy indicates Allee effect. The

populations at time ¢, respectively, u, v is a feedback control variable, and
global attractive of the system and stability of positive equilibrium under certain conditions are discussed below.
2 Positive equilibrium

It is easy to know by calculation, if condition @ <b,y holds. System (1) has a unique positive equilibrium

point E*(x", y", 1", v"), where

* b * * * * a +c
O £ LY . [NV CV T R i
24 ’ anp,te6:q, P 12 P
B= ya,pi+ciq,) _ b, (ay,p,+c,q,)+anb,p, C=_ (byy—a)anp,+c.q,)+yanb,p,

P anp,tCq, anpp,tciq,

3 Global Attractive

Theorem 1 Assume that a<b,y, then the unique positive equilibrium point E”(x", y*, u*, v") of the
system (1) is globally attractive, i.e.,
lim x())=x", lim y(/)=y", lim w@)=x", lim v(t)=v". (2)

Proof Let us suppose that
U,= limsup x(¢), V,= liminf x(¢), U,= limsup y(¢), V,= liminf y(¢),

—>+® 1>+

U= limsup u(t), V,= liminf u(f), Us,= limsup v(t), ¥, = lim inf w(7),

t—>+m t—>+0

For the convenience of expression, we let the first, second, third and fourth equations of system (1) be
equations (a), (b), (¢)and (d) respectively.
From the equations of systems(1)(h), it follows that

d
(T}; <y(b,—ayy). (3)
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According to lemma 1.1.4""" and the comparison principle of differential equations, there is
U,= limsup y(r)< b2 MO, (4)
t—+0 a22
Hence, for small enough £>0, it is known from formula (4) that, there exists big enough 7,>0, for all
t>T,,we have
WO)<M;"+e. (5)
By (5), combined with (a), we have

% <x(b,+a,M"+e)—a,x). (6)

Then,
b +a,(M"+¢)

U= lirgi?px(t)s a (7)
Letting € - 0, we have
U= lirgilolp x(6)< bl—F:llllleéMl“), (8)
Similarly, from (5) and (d), we have
% <—p,v+q, (M +e). (9)
Then,
U, = limsup v(f)< M0 =M, (10)
J 2
For small enough &> 0, it is known from (4) that, there exists big enough 7,> T, for all #>T,,we have
x(O)<MP+e, (11)
From (10) and (¢), we have
%S—plﬂ+ql(M](l)+g). (12)
Therefore ,
U,= nrg sup u(t)< q‘p]‘?‘m =M, (13)
Similarly, we have
% 2y(b,—any)—c,y(M"+¢), (14)
hence
V,= liminf y(1)> bz MP =m?, (15)
: 2
Then,
dx Zx(bl—anx— a) —c, (M3“)+8)x>x(bl —a, x— a) —c, (M +e)x. (16)
dt x+y 14
Therefore ,
_a 0
V= liminf x(1)> bl)’aCIM3 20 - (17)

Applying the same method, we have
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(U]

m
di‘t} >—p,v+q,(m+e)=V,= ligl}ilfv(t)z EEe 2m?, (18)
2
m®
S BP0+ 9= V= limind u)> L0 2wy (19)
>+ )
d b,—c,m?
L <y, ay)-crpmi o Uy 2T 2y (20)
22
a
bitanM—c,m3- M+y (21)
o <x|b,—a, x— Y +a,x(MP+e)—c, x(mP+e)= U, < p ! MR
| TeTy 11
d MO
di‘t} Spv+q, (M +e)= U, < qu% EMP, (22)
2
M
%S_p1ﬂ+Q1(M1(2)+8):>U3<qlp%éM;z), (23)
1
d by— e, M
= By(bz_azzy)_CzJ/(]MA(Z)‘*'g):> v,z 2 ém(;) s (24)
dt Ay
a
b1+a12m§2)—01M3®— m“’+y . (25)
Fh >x|b,—a, x— T +a,x(mP+e)—c, (MP+e)x=V,> p L2 2,0
myréexy 11
d m(z)
& it Vs P (26)
2
d q m(2) R
d*’:>—plﬂ+q1(rnﬁ”+8):> V3>%=m§). (27)
1

Repeating the above process, we get eight sequences{ M} , {m®}(i=1, 2, 3, 4),with

o
) _ =1 _ _ n-1 (n) (n)
. e m ey s Dy G M
M n — ’ a b b ’
1 2 P P>
ap
o
) _ (=-n_ = (n) (n) (n)
b,+a,my—c M, - o b,—c, M, ) q,my @ q,my
o _ my “+y,m;= , my = ,my=———.
my = a ayn P P>
1

Obviously, for any integer n, when ¢=7,, we have m"<V,<U<M" (=1, 2,3, 4). By mathematical
induction, we can prove that {M,-(")} is strictly monotonically reduced, and {m(i")} is strictly monotonically

increased. Thus, both lim M and lim m" (i=1, 2, 3, 4) exist.

n— o n— o

Assume that im M"”=x, limM"=y, lIimM"=u, limM"=v, and limm{"=x, limm{=y,
n— o0 n— 0 -

n— o n— o n— o n— o

limm®= u , limm{ = v. Substitute these quantities into system (1), through calculation, we have,y = y.

n— o0 n—0
Thus, v = v. In addition, we can get when w = @ is holds, then X = x, and the reverse is also true. Hence,
we have x = x and u = u. It is shown that both (x , y, u, v)and (x, y, u, v) are solutions of the system

(1). When condition a<b,y holds, the system (1) has a unique positive solutionE™(x", y", u’, v").

* *

Therefore, x =x =x", y=y =y, u=u=u",v=yv=v.

<

ie., U=V, = limx(t)=x", U,=V,= lim y(t)=y", U,=V,= lim u(t)=p", U,=V,= lim v(t)=v",

The proof of theorem 1 is completed.
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4  Global asymptotically stability

Theorem 2  Assume that a <min{b,y, a,y*}, then E"(x", y", 1", v") is global asymptotically stability.

+52(

where J,(i=1, 2, 3, 4) is the undetermined positive coefficient. We calculate the derivative of V() along the

Proof Define the Lyapunov function

V(t)=5l( -

;) FO (= Y +0,(v=v"),

positive solution of system (1),

dv . o .
dr =0,(x—x )(bl_a]]x_ rﬂ +a12y_clﬂ) +0,(y=y Nb,—ayy—c,v)

20, (u—p" )Y=p 4+ q,x)+20,(v=v" )=p,v+q,»)

01 (x=x" )Y +0,a,(x=x" )y=y")=d,c, (x=x")p-u")

o

- all_ VAN
(x+p)x"+7)

_52a22(y_y*)2_5202(}’_.1/*)(V_V*)_253p1(ﬂ_ﬂ*)z"'zés(ﬂ_ﬂ*)(x_X*)

20,0, (v=V" ) +20,q,(v=v )y -y")

<_(a11 - ;)51 (x_x* )z+5lalz(x_X* )(y_y*)_élcl (x_X* )(ﬂ_ﬂ*)_azazz(y_y* )2
=0, (=Y )=V )=20,p, (u—p" Y+ 20, (u—p" Yx=x")=20,p, V=V )Y +20,4, v—v )y-y").

2 2
a, C a,c,
: SRR 04= , then
q,

o o
4(&11—2)6122 8(“11_2)‘122‘12
Y 14
14

o * * * * * *
dr <—a, - 7)51()‘_3‘ Y+0,a,(x=x Wy=y =00 (y=y ) =20,p,(u—1' ) =20,p,(v=v")

l /(an )5 (x— x) \/5 a, (y-y )] 253p1(/‘_ﬂ*)z_254p2("_"*)2'

We can conclude that —— 7 <0, since a,,— >O(0r a<a,y’). Also,—
i

Assume 0,=1, 0,= , 0,=

—0, if and only if x=x", y=)",

dt dr

u=p", v=v". It can be seen that when condition a<min{b,y, a,;7*} holds, E"(x", y", 1", v") is globally
asymptotically stable.

The proof of theorem 2 is completed.

5 Numerical simulation

Example Corresponding to system (1), we assume that b,=b,=q,=p,=a, =1, a,=a,=p,=¢,=2, a=
0.2,7=c,=c,=0.5.From theorem 2, we know that the positive equilibrium point E”(1.227, 0.333, 0.614, 0.667)

is globally asymptotically stable. The numerical simulation diagram of the solution is as figure 1.
6 Conclusion

In this paper, the influence of additive Allee effect on the dynamical behavior of the system is studied
based on the feedback control commensal symbiosis system. We discuss the existence of a unique positive
equilibrium for the system (1). The conditions of global attraction and globally asymptotically stable of system

(1) are given respectively. The research shows that Allee effect does not affect the stability of the equilibrium
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Ct
=R =

X, Y, U, v

time ¢

Figure 1  Numerical simulation diagram of the solution of system (1) with initial value (x, y, u, v)=(0.3, 0.8, 0.3, 0.6),

0.7,0.5,1.2,04),01.15, 1.2, 0.8, 0.9)and (1.5, 0.2, 0.6, 0.3)

point of the feedback control biased commensal symbiosis system. However, the species with Allee effect can

reach equilibrium only when the population is large. Meanwhile, the larger Allee coefficients a and y, the

slower the population growth is, and this also indicates that Allee effect is unfavorable to population growth.

Definitely, system (1) still has some boundary equilibrium points, which are not discussed in this paper.

In addition, condition a<b,y is not a necessary condition for the existence of a unique positive equilibrium

point in system (1). We can get different branches of the system (1) by classifying the symbols of the

univariate quadratic equation A about x. Then, we classify and discuss the dynamic behavior of different

branches of the system, which will become more complex, and this can be discussed in subsequent studies.
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