钒电池电解液伏安行为研究

李 荣¹,余祖孝²

(1. 重庆师范大学化学学院,重庆400047;2. 四川理工学院材料与化学工程系,四川自贡643000)

摘 要:用电化学法研究了钒离子浓度、支持电解液硫酸浓度、扫描速度以及加入如 EDTA 等添加剂后在石墨电极上的循环伏安行为,探讨了不同温度热处理石墨电极下的循环伏安行为,以及重铬酸钾活化处理与不进行任何处理的石墨电极的可逆性。结果表明:出现了 V(IV)/V(V)电对的氧化和还原峰,而且扫描速度和支持电解液硫酸浓度的增大都使峰值电流增大,但钒离子浓度的增大反而使峰值电流减小,而加入添加剂对峰值几乎没有影响;热处理对石墨电极表面的活性有所提高,活化处理对V(IV)/V(V)电对的氧化和还原可逆性没有明显的提高,但对于 V(Ⅲ)/V(Ⅱ)电对的可逆性有显著的增强。

关键词 :钒电池电解液 ;石墨电极 ;添加剂 热处理 :循环伏安行为 中图分类号 :0641.12⁺1 文献标识码 :A

文章编号:1672-6693(2008)03-0073-04

1984 年,澳大利亚新南威尔士大学的 M. Skyllas-Kazacos 提出了全钒氧化还原液流电池是一种新 型的绿色储能电池,具有容量可调节、使用寿命长、 易操作和维护等优点。在应用于再生能源的固定储 能装置方面展示了很大的优势,且它既可以通过电 力充电又可以通过交换电解液的方式机械充电,所 以,它在车载电源方面的应用也倍受关注^[16]。因 此,研究钒电池电解液循环伏安行为就非常重要。 本文采用电解法制备了四价钒离子的硫酸溶液,探 讨了添加剂、钒离子浓度、支持电解液硫酸浓度、不 同活化方式的石墨电极等因素对钒电池电解液循环 伏安行为的影响。

1 实验

1.1 仪器及试剂

SRJX413 型箱式电阻炉(天津),LK-98C 电化学 综合测试系统(天津)(WE:石墨;CE:Pt;RE:SCE), YB1730A 直流稳压电源(江苏);五氧化二钒等所有 药品均为分析纯。

1.2 钒离子溶液制备

以 V_2O_5 粉末为原料,采用无隔膜电解法制备 钒离子溶液^[1]。向电解槽中加入计算好配比的硫酸 溶液和 V_2O_5 粉末,分别用铅板作电解阴极和阳极, YB1730A 直流稳压电源为电源,所制得的钒电解液 中,主要为四价钒离子溶液。

1.3 自制石墨电极

将一部分石墨棒放入马弗炉中,分别在100、 200、300和400℃下煅烧8h;将另一部分石墨棒放 入20%重铬酸钾溶液中,在90℃下活化处理24h。

2 结果与讨论

2.1 扫描速度的影响

图 1 是在 2 mol·L⁻¹ V(IV) + 2 mol·L⁻¹ H₂SO₄ 溶液体系中,扫描速度分别为 10、30、50 和 70 mV·S⁻¹,以 300 ℃热处理的石墨电极为工作电 极所作的循环伏安曲线。从图 1 和表 1 可知, V(IV)/V(V)氧化还原峰 O¹ 和 R¹在扫描速度为 10、30、50 和 70 mV·S⁻¹时的电位差 $\triangle E_{p1}$ 分别为 0.55、0.91、1.18、1.37 V,表明 V(IV)/V(V)电极 表面反应随着扫描速度增大而不可逆性增加。然 而,V(II)/V(III)氧化还原峰 O² 和 R²在扫描速度 为 10、30、50 和 70 mV·S⁻¹时的电位差 $\triangle E_{p2}$ 分别为 0.37、0.45、0.55 和 0.62 V,这表明 V(II)/V(III) 在热处理石墨电极表面是可逆的,但是随扫描速度 增大, $\triangle E_{p2}$ 也增大,其氧化还原过程逐渐向不可逆 方向转变。图 2 是扫描速度与 V(IV)/V(V)氧化 峰值 O¹ 电流密度关系图,呈线性关系,表明

^{*} 收稿日期 2008-01-30

资助项目:重庆市自然科学基金(No. CSTC2005BB4203);重庆市教委科技项目(No. KJ050803);重庆师范大学重点项目(No. 06XLZ001、06XLB002)

作者简介:李荣(1970-),男、教授、博士、研究方向为材料物理化学。

图 1 扫描速度的影响(在 2 mol · L⁻¹ V(IV)+ 2 mol · L⁻¹H₂SO₄ 中)

表1 循环伏安行为

扫描速度/(mV⋅s ⁻¹)	$E_{\rm pl}$ / V	$E_{\rm pl} \not \subset {\rm V}$	$j_{ m pl}$ /(mA \cdot cm $^{-2}$)	$j_{ m pl}$ / (mA \cdot cm $^{-2}$)	$E_{\rm p2}/$ V	$E_{\rm p2} / ~{\rm V}$	j_{p2} /(mA \cdot cm $^{-2}$)	$j_{\rm p2}/({\rm mA}\cdot{\rm cm}^{-2}$)
10	1.11	0.56	40.51	-21.49	0.20	-0.17	4.46	- 12.38
30	1.36	0.45	66.42	- 34.60	0.24	-0.21	6.70	- 19.74
50	1.51	0.33	79.73	-44.73	0.26	0.29	7.43	-26.91
70	1.65	0.28	93.69	-48.93	0.29	-0.33	8.52	-31.10

注:下标1表示V(IV)/V(V)氧化还原峰01和R1,下标2表示V(II)/V(III)氧化还原峰02和R2,下同。

2.2 钒离子浓度的影响

图 3 是不同钒离子浓度以热处理石墨电极 (300℃)为工作电极,扫描速度为 10 mV·S⁻¹的循 环伏安曲线。图 3 和表 2 可知,随钒离子浓度增高, 峰值电流密度降低,表明了在阴极电流还原过程中 受到的阻碍愈大,极化也越大;而峰值电流密度的 高低与直接参加反应的离子浓度成正比,因此在高 浓度钒离子溶液中,参加反应的离子浓度反而降低。 这是因为^[23].钒有空 d 轨道,钒离子之间极易缔合, 浓度越高,缔合程度也越大,复杂离子参加电化学反 应相应的反应能垒增加,导致极化增大;另一方面, 高浓度溶液黏度较大,使传质过程受到一定的阻碍。

图 3 钒离子浓度的影响

2.3 硫酸浓度的影响

图 4 可知 含支持电解液硫酸的浓度越高 则钒

电解液中 V(Ⅳ)与 V(V)离子之间的氧化峰与还 原峰的峰值电流密度越大,表明在高浓度的硫酸体 系中,钒离子在电极表面的反应活性增大^[4]。而从 峰值电位可知,在 V(Ⅳ)向 V(V)的氧化反应过程 中,峰值电位均有所增大,而在 V(V)向 V(Ⅳ)的 还原过程中,峰值电位均有所减小。

表2 循环伏安行为

浓度∕(mol・L ⁻¹)	$E_{\rm pl}/{\rm V}$	$E_{\rm pl}/V$	$j_{\rm pl}$ /(mA \cdot cm $^{-2}$) $j_{\rm pl}$ /(mA \cdot cm $^{-2}$)
0.5 V(\mathbb{N})+2 $\mathrm{H}_2\mathrm{SO}_4$	1.12	0.58	48.12	- 25.69
1.0 V($\rm IV$)+2 $\rm H_2SO_4$	1.11	0.57	40.75	- 20. 94
2.0 V($\rm IV$)+2 $\rm H_2SO_4$	1.00	0.74	31.98	- 16. 52
$3.0 \text{ V(IV)} + 2 \text{ H}_2\text{SO}_4$	1.04	0.69	30.92	- 16. 19

2.4 添加剂的影响

图 5 是热处理石墨电极(300 ℃)为工作电极, 对含有 1% K₂SO₄、1% 明 胶、1% EDTA 和 1% Na₂C₂O₄ 的" 2.0 mV · S⁻¹ V(IV) + 2.0 mV · S⁻¹ H₂SO₄ "体系的循环伏安行为(10 mV · S⁻¹)。加入 1% 明胶 在 V(IV)/V(V)氧化还原过程中 ,氧化峰 值电位几乎不变 峰值电流密度却减小 ,而还原峰值 电流密度也减小 ,而在 V(II)/V(III)氧化还原过程 中 峰电位值无变化。加入 1% EDTA ,只对 V(II)/ V(III)还原过程中峰值电流密度有很小影响。1% K₂SO₄ 和 1% Na₂C₂O₄ 添加剂的加入 ,除在 V(II)/ V(III)氧化还原过程的峰值电流密度略有所减小 外,其余均无影响。总之,添加剂对电极表面反应的 影响较小,不会对电极表面反应产生不利影响,但是 对钒电解液的稳定性是十分有利的,抑制 V(V)的 析出^[13],保障钒电池长时间的正常运行。

2.5 不同温度下热处理的石墨电极的影响

图 6 是以不同温度(100~400 ℃)下热处理的 石墨电极为工作电极,对"2 mV·S⁻¹V(IV)+ 2 mV·S⁻¹H₂SO₄"体系所作的循环伏安曲线(10 mV·S⁻¹)。从图 6 和表 3 可知,首先,经过热处理 的石墨电极表面能明显地观察到 V(II)/V(III)氧 化还原峰 O²和 R²,但在未经热处理的石墨电极表 面上几乎观察不到。其次,经过热处理石墨电极表 面的峰电流密度较大,并且随着热处理温度增加而 峰值电流增大,表明在热处理后的石墨电极表面离 子的转移速度较快。最后,热处理不会对电极的可 逆性产生不利影响。总之,经过热处理后的石墨电极,对电解液的循环伏安行为是有利的。 2.6 不同石墨电极的伏安行为

图 7 是未处理、300 °C活化处理、重铬酸钾活化 处理的石墨电解在"2 mV·S⁻¹ V(IV)+2 mV·S⁻¹ H₂SO₄ "体系中的伏安曲线。未经过活化处理和经 过活化处理(300 °C热处理和 K₂Cr₂O₇ 处理)的石墨 电极相比较,经过活化处理的石墨电极在 V(IV)/ V(V)氧化还原过程中,电极可逆性并没有明显增 大;然而在 V(II)/V(III)氧化还原过程中,经过活 化了的石墨电极的可逆性明显增大,表明活化石墨 电极适合作为电池的负极电极材料。活化石墨电极 可逆性增大的原因为^[51]:无论是热处理还是重铬锰 酸钾溶液处理,都增大了电极表面 C – O和 C = O 官 能团的数目,提高了电极的亲水性,充当了电极表面 的活性点,催化了钒的电极反应过程。

图 6 不同温度下热处理石墨电极的影响

图 7 不同石墨电极的影响

表3 循环伏安行为

热处理温度∕℃	$E_{\rm pl} \not \subset {\rm V}$	$E_{\rm pl}/$ V	$j_{ m pl}$ /(mA \cdot cm $^{-2}$)	$j_{ m pl}$ / (mA \cdot cm $^{-2}$)	$E_{\rm p2} \not < {\rm V}$	$E_{\rm p2}/$ V	$j_{\rm p2}$ /(mA \cdot cm $^{-2}$)	$j_{\rm p2}$ /(mA \cdot cm $^{-2}$)
常温	1.03	-	13.32	-	0.53	-0.17	1.04	-2.87
100	1.10	0.57	22.86	- 10.36	0.14	-0.16	1.96	-6.78
200	1.11	0.57	35.72	-18.46	0.19	-0.17	4.15	- 10.71
300	1.12	0.56	41.15	-21.33	0.23	-0.18	4.94	- 12. 15
400	1.12	0.57	43.12	-22.53	0.21	-0.17	5.22	- 12.97

3 结论

1)随扫描速度增加,V(Ⅳ)/V(Ⅴ)氧化还原峰 值电流增大,氧化峰电位略有增大,不可逆性也增 加,它受扩散控制。2)增加钒离子浓度,不利于 V(Ⅳ)/V(Ⅴ)电极反应。3)加入添加剂EDTA、明 胶、硫酸钾和草酸钠,电极表面反应受到添加剂的影 响较小,但是对电池稳定性有利。4)热处理不会对 电极的可逆性产生不利影响,经过热处理的石墨电 极峰值电流较大,并且随热处理温度增加而峰值电 流增大。5)活化处理对石墨电极在V(Ⅳ)/V(Ⅴ) 氧化还原过程中,电极可逆性并没有明显增大,但峰 值电流增加;然而,在V(Ⅱ)/V(Ⅲ)氧化还原过程 中,电极可逆性明显提高。

参考文献:

- [1] 罗冬梅. 钒氧化还原液流电池研究[D]. 沈阳:东北大 学 2005:19-21.
- [2] 崔艳华 孟凡明. 全钒离子液流电池的应用研究[J]. 电 源技术 2000 24(6) 356-358.
- [3] 许茜 ,赖春艳 ,尹远洪. 提高钒电池电解液的稳定性 J]. 电源技术 2002 26(1) 29-31.
- [4] ORIJI G , KATAYAMA Y , MIURA T. Investigation on V(IV)/V(V) Species in a Vanadium Redox Flow Battery
 [J]. Electrochimica Acta , 2004(49) 3091-3095.
- [5] SUN B T. SKYLLAS-KAZACOS M. Chemical Modification of Graphite Electrode Materials for Vanadium Redox Flow Battery Application [J]. Electrochimca Acta, 1992, 37 (13) 2459-2645.
- [6]梁国明,李荣,余世刚,等. 钒氢化物 VH₂ 电子结构的量 子化学研究[J]. 重庆师范大学学报(自然科学版), 2006 23(2) 54-56.

Study of Cyclic Voltammetry Behavior of Electrolyte in Vanadium Redox Flow Battery

LI Rong¹, YU Zu-xiao²

(1. College of Chemistry, Chongqing Normal University, Chongqing 400047;

2. Dept. of Material and Chemical Engineering , Sichuan University of Science & Engineering , Zigong Sichuan 643000 , China) **Abstract** Cyclic voltammetry behaviors on the graphite electrode at different vanadium ion concentration , H_2SO_4 concentration , scan rate , additives has been studied by electrochemical methods. The conclusion shows that the characteristic peak of V(IV)/V(V) redox couples has appeared. The higher the concentration of the H_2SO_4 and the scan rate are , the bigger the peak current is. But the increasing of the electrolytic liquid concentration makes the peak current decreased , and there is no influence for adding additives. Cyclic voltammetry behavior on the graphite electrode at different heating temperature , and the reversibility of both activated and non-activated graphite electrode has also been studied. The result indicats that heating treatment could increase activation of the graphite electrode surface , and the activation treatment could not improve reversibility of V(IV)/V(V) redox couples. However , it could enhance the reversibility of V(II)/V(II) redox couples.

Key words vanadium redox flow battery ; graphite Electrode ; additives ; heat treatment ; cyclic voltammetry behavior

(责任编辑 欧红叶)