DOI:10.3969/J.ISSN.1000-5137.2023.03.003

Some irreducible representations of $GL_2(\mathbb{C})$

CHEN Xiaoyu, LAI Yuanxu, LI Zhize

(Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China)

Abstract: Let $\mathbf{G} = GL_2(\mathbb{C})$, and let \mathbf{B} be the standard Borel subgroup of \mathbf{G} , and let $\mathbb{C}\mathbf{G}$ (resp. $\mathbb{C}\mathbf{B}$) be the group algebra of \mathbf{G} (resp. \mathbf{B}) over the field of complex numbers. For any character θ of \mathbf{B} , define the naive induced module $\mathbb{M}(\theta) = \mathbb{C}\mathbf{G} \otimes_{\mathbb{C}\mathbf{B}} \theta$. In this paper, we prove that if θ is antidominant, then $\mathbb{M}(\theta)$ is irreducible. Thus, we give a class of new infinite-dimensional irreducible representations of $GL_2(\mathbb{C})$.

Key words: reductive group; naive induced module; Bruhat decomposition

CLC number: O 186.5 **Document code:** A **Article ID:** 1000-5137(2023)03-0295-08

$GL_2(\mathbb{C})$ 的一些不可约表示

陈晓煜, 赖元旭, 李支泽

(上海师范大学 数理学院, 上海 200234)

摘 要: 设 G = $GL_2(\mathbb{C})$,并且 B 是 G 的标准 Borel 子群,并且 CG, CB 分别是群 G 和群 B 的在复数 域 C 上的群代数. 对于任意 B 的特征标 θ , 定义 G 的离散诱导模 $\mathbb{M}(\theta) = \mathbb{C} \mathbf{G} \otimes_{\mathbb{C} \mathbf{B}} \theta$. 证明了当 θ 是反支配 权时, $\mathbb{M}(\theta)$ 是个不可约表示. 由此给出了一类 $GL_2(\mathbb{C})$ 全新的、无限维的不可约表示. **关键词**: 简约群, 朴素诱导模, Bruhat 分解

Received date: 2023-04-20

Foundation item: Shanghai Sailing Program (17YF1413800); The National Natural Science Foundation of China (11701373)

Biography: CHEN Xiaoyu (1985—), male, associate professor, research area: algebraic groups and quantum groups. E-mail: chenxiaoyu@shnu.edu.cn

引用格式: 陈晓煜, 赖元旭, 李支泽. *GL*₂(ℂ) 的一些不可约表示 [J]. 上海师范大学学报 (自然科学版), 2023, 52(3): 295–302.

Citation format: CHEN X Y, LAI Y X, LI Z Z. Some irreducible representations of $GL_2(\mathbb{C})$ [J]. Journal of Shanghai Normal University (Natural Sciences), 2023, 52(3):295–302.

1 Introduction

The classification of irreducible representations (up to isomorphism) of a given group is a fundamental problem in the representation theory. Let **G** be a connected reductive group over a field \Bbbk , e.g. $GL_n(\Bbbk)$, $SL_n(\Bbbk)$. The representation of **G** plays a prominent role in various areas of mathematics such as algebraic geometry and number theory. In the case $\Bbbk = \overline{\mathbb{F}}_q$, the algebraic closure of \mathbb{F}_q (\mathbb{F}_q is the finite field of q elements) or $\Bbbk = \mathbb{C}$, the field of complex numbers, the irreducible rational representations of **G** was classified by CHEVALLEY in 1958^[1]. In 1973, BOREL and TITS classified all finite-dimensional irreducible representations of **G** when \Bbbk is an infinite field and thus verified a conjecture of Steinberg^[2]. In the case $\Bbbk = \mathbb{F}_q$, the classification of irreducible ordinary representations was given in [3] by DELIGNE and LUSZTIG, and the classification of irreducible modular representations was given in [4] by ROUQUIER and BONNAFE.

Despite the fruitful results mentioned above, little was known about the infinite-dimensional irreducible representations of **G** when \Bbbk is an infinite field. In 2014, XI began to study the infinite-dimensional representations of **G** when $\Bbbk = \overline{\mathbb{F}}_q$. He constructed such representations (in particular, the infinite-dimensional Steinberg modules) via the union of irreducible representations of the finite groups $\mathbf{G}(\mathbb{F}_{q^r})^{[5]}$. XI showed that the infinite-dimensional Steinberg module is irreducible if the base field is of characteristic zero or characteristic of \mathbb{F}_q . In 2015, YANG proved in [6] that the infinite-dimensional Steinberg module is irreducible for any base field when $\Bbbk = \overline{\mathbb{F}}_q$. Let **B** be the standard Borel subgroup defined over \mathbb{F}_q and \Bbbk' is another field, and let θ be a character of **B**, and define $\mathbb{M}(\theta)_{\Bbbk'} = \Bbbk' \mathbf{G} \otimes_{\Bbbk' \mathbf{B}} \theta$. Assume that $\Bbbk = \overline{\mathbb{F}}_q$. In 2019, CHEN and DONG proved in [7] that $\mathbb{M}(\theta)_{\Bbbk'}$ has finite length and determined all composition factors when the characteristic of \Bbbk' is not equal to that of $\overline{\mathbb{F}}_q$, and $\mathbb{M}(\theta)_{\Bbbk'}$ for any field \Bbbk' when $\mathbb{M}(\theta)_{\Bbbk'}$ has finite length. Recently, CHEN classified all irreducible $\Bbbk \mathbf{G}$ -modules with **B**-stable line when $\Bbbk = \Bbbk' = \overline{\mathbb{F}}_q^{[10]}$.

In this paper, we deal with $\mathbb{k} = \mathbb{k}' = \mathbb{C}$ and $\mathbf{G} = GL_2(\mathbb{C})$. Let θ be a character of \mathbf{B} , we give a sufficient condition for the irreducibility of $\mathbb{M}(\theta) = \mathbb{C}\mathbf{G} \otimes_{\mathbb{C}\mathbf{B}} \theta$. This paper is organized as follows: in section 2, we recall some basic facts of group representations, and give the main result. In section 3, we recall the Bruhat decomposition for $GL_2(\mathbb{C})$ which will be frequently used later. In section 4, we give the proof of the main result.

2 Basic definition and main result

In this section, we recall some basics for group representations and the structure of reductive groups. Let V be

Definition 1 (linear representation). A linear representation of G is a group homomorphism

$$\rho: G \to GL(V), \quad g \mapsto \rho(g).$$

For all $v \in V$, $\rho(g)v$ is abbreviated to gv. When ρ is given, we say that V is a representation space of G (or even simply, by abuse of language, a representation of G).

Definition 2 (sub-representation). Let W be a subspace of V, then W is called a sub-representation of V if $gw \in W$ for all $g \in G$ and $w \in W$.

Definition 3 (irreducible representation). Let V be a representation of G, V is said to be irreducible if the only sub-representations of V are $\{0\}$ and V.

We denote by $\mathbb{C}G$ the group algebra of G over \mathbb{C} . It is well known that a representation of G is identified with a $\mathbb{C}G$ -module, and we will indiscriminately use the terminology "linear representation" or "module".

Definition 4 (induced representation). Let H be a subgroup of G, and let W be a left $\mathbb{C}H$ -module. Then the tensor product of the right $\mathbb{C}H$ -module $\mathbb{C}G$ and the left $\mathbb{C}H$ -module W

$$\mathbb{C}G\underset{\mathbb{C}H}{\otimes}W$$

is a left $\mathbb{C}G$ -module which is denoted by $\operatorname{Ind}_{H}^{G}W$, and is called the induced representation from $\mathbb{C}H$ -module W.

Following the notation above, it is well-known that a basis of the induced representation is given by the following proposition (cf. [11]).

Proposition 1 Suppose that $\{w_i \mid i \in I\}$ is a basis of W and $\{g_jH \mid j \in J\}$ is the set of left cosets of G with respect to H. Then the set

$$\{g_j \otimes w_i \mid i \in I, j \in J\}$$

forms a basis of $\operatorname{Ind}_{H}^{G}W$.

One of the most commonly used methods to get a new representation of G is to study the induced representations from some subgroups of G.

Let $\mathbf{G} = GL_2(\mathbb{C})$ and let \mathbf{B} be the standard Borel subgroup of \mathbf{G} (the set of upper-triangular matrixes in \mathbf{G}).

$$\mathbf{U} = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{C} \right\}, \ \mathbf{T} = \left\{ \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} \mid c, d \in \mathbb{C}^{\times} \right\}.$$

Since U is a normal subgroup of B, we have the natural homomorphism $\pi : \mathbf{B} \to \mathbf{T}$ and ker $\pi = \mathbf{U}$. Let $\bar{\theta}$ be a homomorphism from group T into group \mathbb{C}^{\times} . Then the pullback of $\bar{\theta}$ by π , denoted by θ for convenience $(\theta = \bar{\theta} \circ \pi)$, is a group homomorphism from B into \mathbb{C}^{\times} i.e. a character of B.

Let \mathbb{C}_{θ} be the 1-dimensional space affording the character θ . We are interested in the induced module $\mathbb{C}\mathbf{G} \otimes_{\mathbb{C}\mathbf{B}} \mathbb{C}_{\theta}$ which is denoted by $\mathbb{M}(\theta)$. A nature question is whether $\mathbb{M}(\theta)$ is an irreducible module.

Definition 5 (antidominant). A character θ of **B** is called antidominant if there is an $n \in \mathbb{Z}_{>0}$, such that

$$\theta\left(\begin{pmatrix}t&0\\0&t^{-1}\end{pmatrix}\right) = t^{-n},$$

for all $t \in \mathbb{C}^{\times}$.

The main result of this paper is the following theorem.

Theorem 1 If θ is antidominant, then $\mathbb{M}(\theta)$ is irreducible.

3 Bruhat decomposition of $GL_2(\mathbb{C})$

For any reductive group of G, one has the Bruhat decomposition (cf. [12, Chapter 8]). In this section we recall the Bruhat decomposition of $GL_2(\mathbb{C})$. In order to get a basis of $\mathbb{M}(\theta)$, We need to understand \mathbf{G}/\mathbf{B} . Let $\mathbf{B}\setminus\mathbf{G}/\mathbf{B}$ be the set of double cosets of G with respect to B.

It is well known that

$\mathbf{G} = \mathbf{B} \cup \mathbf{B}s\mathbf{B},$

where $s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, which is called Bruhat decomposition of $GL_2(\mathbb{C})$.

Proposition 2 There is a bijection $\phi : \mathbf{U} \times \{s\} \times \mathbf{B} \rightarrow \mathbf{B}s\mathbf{B}$.

Proof Let b_1sb_2 be an arbitrary element of $\mathbf{B}s\mathbf{B}$. Since $\mathbf{B} = \mathbf{U} \rtimes \mathbf{T}$, we have $b_1 = ut$ where $u \in \mathbf{U}, t \in \mathbf{T}$, then $b_1sb_2 = utsb_2 = us(stsb_2)$, where $us(stsb_2) \in \mathbf{U}s\mathbf{B}$. We define $\phi((u, s, b)) = usb$ which is a bijection.

Combining $\mathbf{G} = \mathbf{B} \cup \mathbf{B}s\mathbf{B}$ and proposition 2. We see that the set of all represent elements of cosets in \mathbf{G}/\mathbf{B} can be written as $\{I_2\} \cup \{us \mid u \in \mathbf{U}\}$. For any $a \in \mathbb{C}$, we set $\epsilon(a) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \in \mathbf{U}$.

Proposition 3 For any $a \in \mathbb{C}^{\times}$ we have

$$s\epsilon(a)s = \epsilon(a^{-1})s \begin{pmatrix} a & 0\\ 0 & -a^{-1} \end{pmatrix} \epsilon(a^{-1}).$$
⁽¹⁾

Proof First, the left side of (1) equals to

$$s\epsilon(a)s = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & a\\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0\\ a & 1 \end{pmatrix} \in \mathbf{G},$$

and the right side of (1) equals to

$$\begin{pmatrix} 1 & a^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & -a^{-1} \end{pmatrix} \begin{pmatrix} 1 & a^{-1} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix},$$

and thus the result is proved.

4 Proof of the main result

Throughout this section, we assume that θ is antidominant. In order to show that $\mathbb{M}(\theta)$ is an irreducible $\mathbb{C}\mathbf{G}$ module, it is enough to show $\mathbb{M}(\theta) = \mathbb{C}\mathbf{G}.x$ for any $0 \neq x \in \mathbb{M}(\theta)$. Since the set of all representatives of cosets in \mathbf{G}/\mathbf{B} can be written as $\{I_2\} \cup \{us \mid u \in \mathbf{U}\}$ and proposition 1, we see that $\{us \otimes 1 \mid u \in \mathbf{U}\} \cup \{1 \otimes 1\}$ forms a basis of $\mathbb{M}(\theta)$. We abbreviate us1 for $us \otimes 1$, 1 for $1 \otimes 1$, then we have

$$x = l1 + \sum_{i=1}^{r} c_i \epsilon(a_i) s1 \text{ where } l, c_i \in \mathbb{C}, \ r \in \mathbb{Z}_{>0}.$$

Since $x \neq 0$, l and c_i are not all equal to 0. If all of the c_i are equal to 0, then x = l1 with $l \neq 0$ and we get $\mathbb{C}\mathbf{G}.x = \mathbb{C}\mathbf{G}.1 = \mathbb{M}(\theta)$, the proof is finished.

Now we suppose that c_i are not all equal to 0. Since $\theta = \overline{\theta} \circ \pi$ and ker $\pi = \mathbf{U}$, we have $\epsilon(a).1 = 1$. Since $\{a_i\}$ is a finite set, we can take $a \in \mathbb{C}$ such that

$$0 \neq (1 - \epsilon(a)) . x = \sum_{i=1}^{r} c_i \left[\epsilon(a_i) - \epsilon(a_i + a) \right] s 1 \in \mathbb{C} \mathbf{G} . x .$$

Without loss of generality, we can assume that $x = \sum_{i=1}^{r} k_i \epsilon(a_i) s1$ (otherwise we replace x by $(1 - \epsilon(a)) \cdot x$ for a suitable choice of a).

The following idea is motivated by [13, proposition 5.4].

Lemma 1 If
$$x = \sum_{i=1}^{r} k_i \epsilon(a_i) s1$$
, then we have $\sum_{i=1}^{r} k_i s1 \in \mathbb{C}\mathbf{G}.x$.

Proof Let $m_i = k_i s_1$, then we have

$$x = \epsilon(a_1)m_1 + \epsilon(a_2)m_2 + \dots + \epsilon(a_r)m_r \in \mathbb{C}\mathbf{G}.x$$

Using the formula

$$\begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & ad \\ 0 & 1 \end{pmatrix}$$

and noting that

$$\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \epsilon(a_i)s1 = \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a_i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} 1$$

$$= \begin{pmatrix} 1 & ka_i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} 1$$

$$= \begin{pmatrix} 1 & ka_i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} 1$$

$$= \theta \left(\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \right) \epsilon(a_i)^k s1,$$

we have

$$\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} . x = \theta \left(\begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \right) \left(\epsilon(a_1)^k m_1 + \epsilon(a_2)^k m_2 + \dots + \epsilon(a_r)^k m_r \right) \in \mathbb{C}\mathbf{G}. x$$

Thus, we have

$$\epsilon(a_1)^k m_1 + \epsilon(a_2)^k m_2 + \dots + \epsilon(a_r)^k m_r \in \mathbb{C}\mathbf{G}.x \text{ for } k = 1, 2, \dots, r.$$
(2)

Let $z_i = \epsilon(a_i) \in \mathbb{C}\mathbf{U}, \ i = 1, 2, \cdots, r$ and $\sigma_k = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq r} z_{i_1} z_{i_2} \cdots z_{i_k} \in \mathbb{C}\mathbf{U}, \ k = 1, 2, \cdots, r.$

Using the identity

$$(z_k - z_1)(z_k - z_2) \cdots (z_k - z_r) = 0, \ k = 1, 2, \cdots, r$$

we have

$$z_k^r - \sigma_1 z_k^{r-1} + \sigma_2 z_k^{r-2} + \dots + (-1)^r \sigma_r = 0, \ k = 1, 2, \dots, r.$$

Then we obtain the aligns

$$(z_1^r - \sigma_1 z_1^{r-1} + \sigma_2 z_1^{r-2} + \dots + (-1)^r \sigma_r) m_1 = 0,$$

$$(z_2^r - \sigma_1 z_2^{r-1} + \sigma_2 z_2^{r-2} + \dots + (-1)^r \sigma_r) m_2 = 0,$$

$$\dots$$

$$(z_r^r - \sigma_1 z_r^{r-1} + \sigma_2 z_r^{r-2} + \dots + (-1)^r \sigma_r) m_r = 0.$$

Adding the equations above, we obtain

$$(-1)^{r}\sigma_{r}\left(\sum_{i=1}^{r}m_{i}\right)$$

$$=(-1)^{r}\sigma_{r-1}\sum_{i=1}^{r}z_{i}m_{i}+(-1)^{r-1}\sigma_{r-2}\sum_{i=1}^{r}z_{i}^{2}m_{i}+\dots+\sigma_{1}\sum_{i=1}^{r}z_{i}^{r-1}m_{i}-\sum_{i=1}^{r}z_{i}^{r}m_{i}.$$
(3)

300

Since

$$\sigma_r = \epsilon(a_1)\epsilon(a_2)\cdots\epsilon(a_r) = \epsilon(a_1 + a_2 + \cdots + a_r)$$

is invertible, combining (2) and (3), we obtain

$$m_1 + m_2 + \dots + m_r \in \mathbb{C}\mathbf{G}.x,$$

and the result is proved.

By lemma 1 we have $\sum_{i=1}^{r} k_i s 1 \in \mathbb{C}\mathbf{G}.x$. If $\sum_{i=1}^{r} k_i \neq 0$, then $s1 \in \mathbb{C}\mathbf{G}.x$, thus $\mathbb{C}\mathbf{G}.x = \mathbb{M}(\theta)$. Now we assume that $\sum_{i=1}^{r} k_i = 0$, it is clear that there is a $c \in \mathbb{C}$ such that $a_i + c \neq 0$ for all a_i . For such c, we have $s\epsilon(c)1.x = \sum_{i=1}^{r} k_i s\epsilon(a_i + c)s1$.

By proposition 3,

$$s\epsilon(a)s = \begin{pmatrix} 1 & 0\\ a & 1 \end{pmatrix} = \epsilon(a^{-1})s \begin{pmatrix} a & 0\\ 0 & -a^{-1} \end{pmatrix} \epsilon(a^{-1}),$$

and since θ is antidominant, we have $\theta\left(\begin{pmatrix}t & 0\\ 0 & t^{-1}\end{pmatrix}\right) = t^{-n}$.

Combining these, we have

$$s\epsilon(c)1.x = \sum_{i=1}^{r} k_i s\epsilon(a_i + c)s1 = \theta\left(\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}\right) \sum_{i=1}^{r} k_i (a_i + c)^{-n} \epsilon((a_i + c)^{-1})s1$$

Now, if there exists $c \in \mathbb{C}$ such that $\sum_{i=1}^{r} k_i (a_i + c)^{-n} \neq 0$, then we can replace k_i with $k_i (a_i + c)^{-n}$, and the proof is finished. To see this, it is enough to show the following lemma.

Lemma 2 Let $\{f_i(x) = (a_i + x)^{-n} \mid i = 1, \dots, r\}$ be a finite set of complex value functions, then $\{f_i(x)\}$ are linearly independent.

Proof The Wronsky determinant of $\{f_i(x)\}$ is

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_r(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_r(x) \\ \vdots & \vdots & & \vdots \\ f_1^{r-1}(x) & f_2^{r-1}(x) & \cdots & f_r^{r-1}(x) \end{vmatrix}$$
$$= C \begin{vmatrix} (a_1 + x)^{-n} & (a_2 + x)^{-n} & \cdots & (a_r + x)^{-n} \\ (a_1 + x)^{-(n+1)} & (a_2 + x)^{-(n+1)} & \cdots & (a_r + x)^{-(n+1)} \\ \vdots & & \vdots & & \vdots \\ (a_1 + x)^{-(n+r-1)} & (a_2 + x)^{-(n+r-1)} & \cdots & (a_r + x)^{-(n+r-1)} \end{vmatrix},$$

where

$$C = \prod_{i=1}^{r-1} \prod_{k=0}^{i-1} (-1)^i (n+k).$$

Let x = 0, we have

$$W(0) = C \begin{vmatrix} a_1^{-n} & a_2^{-n} & \cdots & a_r^{-n} \\ a_1^{-(n+1)} & a_2^{-(n+1)} & \cdots & a_r^{-(n+1)} \\ \vdots & \vdots & & \vdots \\ a_1^{-(n+r-1)} & a_2^{-(n+r-1)} & \cdots & a_r^{-(n+r-1)} \end{vmatrix} = D \begin{vmatrix} 1 & 1 & \cdots & 1 \\ b_1 & b_2 & \cdots & b_r \\ \vdots & \vdots & & \vdots \\ b_1^{r-1} & b_2^{r-1} & \cdots & b_r^{r-1} \end{vmatrix},$$

where

$$b_i = a_i^{-1}, \ D = \prod_{j=1}^r b_j^n \prod_{i=1}^{r-1} \prod_{k=0}^{i-1} (-1)^i (n+k).$$

Since $a_i \neq a_j$ $(i \neq j)$, $b_i \neq b_j$, we have $W(0) \neq 0$, thus $f_1(x), f_2(x), \dots, f_r(x)$ are linearly independent.

Thus, by lemma 2 there exists $c \in \mathbb{C}$, such that $\sum_{i=1}^{r} k_i (a_i + c)^{-n} \neq 0$. then the theorem is proved.

References:

- [1] CHEVALLEY S C. Classification des Groupes de Lie Algébriques [M]. Paris: Secreétariat Mathématique, 1958.
- [2] BOREL A, TITS J. Homomorphismes "abstraits" de groupes algebriques simples [J]. Annals of Mathematics, 1973, 97(3): 499–571.
- [3] DELIGNE P, LUSZTIG G. Representations of reductive groups over finite fields [J]. Annals of Mathematics, 1976, 103(1): 103–161.
- [4] BONNAFÉ C, ROUQUIER R. Catégories dérivées et variétés de Deligne-Lusztig [J]. Publications Mathématiques de l'Institut des Hautes études Scientifiques, 2003, 97(1): 1–59.
- [5] XI N H. Some infinite dimensional representations of reductive groups with Frobenius maps [J]. Science China Mathematics, 2014, 57(6): 1109–1120.
- [6] YANG R T. Irreducibility of infinite dimensional Steinberg modules of reductive groups with Frobenius maps [J]. Journal of Algebra, 2019, 533: 17–24.
- [7] CHEN X Y, DONG J B. Abstract-induced modules for reductive algebraic groups with Frobenius maps [J]. International Mathematics Research Notices, 2022, 2022(5): 3308–3348.
- [8] CHEN X Y, DONG J B. The permutation module on flag varieties in cross characteristic [J]. Mathematische Zeitschrift, 2019, 293(1): 475–484.
- [9] CHEN X Y, DONG J B. The decomposition of permutation module for infinite Chevalley groups [J]. Science China Mathematics, 2021, 64(5): 921–930.
- [10] CHEN X Y. Irreducible modules of reductive groups with *B*-stable line [J]. arXiv: 2011.04115, 2020.
- [11] SERRE J P. Linear Representations of Finite Groups [M]. New York: Springer, 1977.
- [12] CARTER R W. Simple Groups of Lie Type [M]. London: John Wiley & Son Ltd, 1972.
- [13] PUTMAN A, SNOWDEN A. The Steinberg representation is irreducible [J]. Duke Mathematical Journal, 2023, 172(4): 775–808.

(责任编辑: 冯珍珍)