首页 | 本学科首页   官方微博 | 高级检索  
     

有限群的正规嵌入子群
引用本文:郭鹏飞,魏先彪. 有限群的正规嵌入子群[J]. 上海大学学报(自然科学版), 2009, 15(5): 496-500
作者姓名:郭鹏飞  魏先彪
作者单位:上海大学,理学院,上海,200444;连云港师范高等专科学校,数学系,江苏,连云港,222006;上海大学,理学院,上海,200444
基金项目:国家自然科学基金资助项目,江苏省高校青蓝工程资助项目 
摘    要:G的子群H称为G的正规嵌入子群, 如果对于|H|的每个素因子p, 存在G的一个正规子群K,使得H的一个Sylow p-子群也是K的一个Sylow p-子群. 假设对于G的每个非循环Sylow子群P有一个子群D,使得1<|D|<|P|,且P的所有阶为|D|和2|D|(若P是非交换2-群且|P:D|>2)的子群HG的正规嵌入子群, 得到Gp-幂零群以及超可解群的一些充分条件, 部分结果被推广到群系. 

关 键 词:正规嵌入子群  p-正规嵌入子群  p-幂零群  超可解群
收稿时间:2008-05-12

Normally Embedded Subgroups of Finite Groups
GUO Peng-Fei,WEI Xian-Biao. Normally Embedded Subgroups of Finite Groups[J]. Journal of Shanghai University(Natural Science), 2009, 15(5): 496-500
Authors:GUO Peng-Fei  WEI Xian-Biao
Affiliation:1.College of Sciences, Shanghai University, Shanghai 200444, China; 2.Department of Mathematics, Lianyungang Teachers College, Lianyungang 222006, Jiangsu, China
Abstract:A subgroup H of a finite group G is said to be normally embedded in G if,for every prime p dividing the order of H,there exists a normal subgroup K of G such that a Sylow p-subgroup of H is also a Sylow p-subgroup of K.This paper assumes that every non-cyclic Sylow subgroup P of G has a subgroup D such that 1 <|D|<|P| and all subgroups H of P with order |H| = |D| and with 2|D| ( if P is a non-abelian 2-group and |P:D|>2) are normally embedded in G,and some sufficient conditions are obtained on G to be p-nilpotent groups and supersolvable groups.Moreover,some of them are extended to formations.
Keywords:normally embedded subgroups  p-normally embedded subgroups  p-nilpotent groups  supersolvable groups
本文献已被 万方数据 等数据库收录!
点击此处可从《上海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号