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Abstract: The Kneser graph KG (n,k) is the graph whose vertex set consists of all £ -subsets of
an n -set,and two vertices are adjacent if and only if they are disjoint. The square G° of a graph
G is defined on the vertex set of G such that distinct vertices within distancetwo in G are joined
by an edge. By theoretical analysis and computer search,we obtain that 8 <C X(KGZ(II,S)) <
10, which improves the known lower bound 7 and upper bound 12,and that 10 <C X(KG2(13,

6)) < 16.
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In this note, we shall only consider graphs
without multiple edges or loops. For a positive inte-
ger n ,the set {1,2,++,n} is denoted by [n]. For a
graphG=(V,E) ,the distance d;(u,v) between two

verticesu,v € V is the length of a shortest path con-
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necting them. The graph G*,called the square of G ,
is defined on V such that two vertices u and v are ad-
jacent in G* if mol only if 1 << d¢(u,v) < 2. Forn >
2k > 0, the Kneser graph KG(n,k) is the graph
whose vertex set consists of all £ -subsets of the set
[n], of which any two vertices A and B are adjacent
if mol only if A N B=(.

A proper coloring of the vertices of a graph G=
(V,E) is a map f:V — N

receive distinct colors in N.

, where adjacent vertices
The chromatic number

%(G) is the minimum number of colors needed for a
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proper coloring of G. A graph G is said to be k chro-
matic if y(G) =k, and & -colorable if 3 (G) < k.

The chromatic number of Kneser graph was

“ pro-

posed a conjecture that y(KG(n,k)) =n — 2k + 2,
]

studied by many researchers. In 1955, Kneser
which was proved by Lovdsz? and Bdrany"' in
1978. Later a purely combinatorial proof was ob-
tained by Matousek"" using Tucker's lemma.

The Kneser graph has some extensions and
generalizations,of which the coloring problems also
have been considered. For example, Ziegler'™ studied
coloring problem of generalized Kneser graphs on
hypergraph. Araujo et al® researched on coloring
problem of some geometric type Kneser graphs.

Recently, the chromatic number of the square
of Kneser graph seems interesting. Kim and Nakpr-
asit'” showed that y (KG* (2k+1,k)) <4k when % is
odd and X(KG2 (2k+1,k)) < 4k+2 when k is even.
In particular, X(KGZ(7,3)) =6and 11 << X(KG2(9,
4)) << 18. Jun-Yo Chen et al'* improved the upper
bounder for y(KG*(2k + 1,k)) from 4k to 3k + 2.
Furthermore, they showed that X(KG2 (9,4)) < 12.
In a reference[ 9 ],it was proved that X(KG2 (9,4)) =
11. Thus,for £ =1,2,3,4,the values of y(KG*(2k +
1,k)) were determined exactly.

The value of y(KG*(11,5)) is still unknown.
Recently, P. Lakin wrote a presentation discussing
the chromatic number of some square Kneser
graphs, especially y(KG*(11,5)) and provided that
X(KG2(11,5)) < 12, which is available at http://
www. bruce - shapiro. net/math382/Projects/con-
tent/Lakin-Presentation. pdf.

In this note, we give a computer-assist proof

showing that 8 <C X(KGZ(II,S)) < 10.

1 Structures of KG*(11,5) and a lower bound
for y(KG*(11,5))

Firstly, we have the following simple lower
bound for y (KG*(2k + 1,k&)) .
x(KG* 2k +1,k)) =k + 2.
Proof In KG®(2k+ 1,k), it is not difficult to
see that vertex set {12+ {b—1}i | << i << 2k + 1}
is a k + 2-clique. So y(KG* (2k + 1,k)) =k + 2.
By computer search, the following fact are es-
tablished.
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Theorem 1

Fact 1

KG*(11,5) is 66.

(2) There are exactly 5040 independent sets of
order 66 in KG*(11,5).

By Theorem 1 we have that X(KG2(11,5)) =
7. By the above Fact 1,it is easy to see that
X(KGZ(II,S)) = 7 if and only if
there exist 7 disjoint independent sets of order 66 in
KG*(11,5).

Now we can construct a graph G as follows.

(1) The independent number of

Lemma 1

V(&) is the set of independent set of order 66. Two
vertices in G are joint by an edge if and only if the
two independent sets are disjoint. Experiment result
shows that the clique number of G is 2. Therefore,
by Lemma 1,we have

Theorem 2 X(KGZ(H,S)) = 8.

2 The upper bound for y(KG?(11,5))

The graph coloring problem is a famous diffi-
cult combinatorial optimization NP-complete prob-
lem. There are many heuristic coloring algorithms
to solve them,and the tabu search method is a popu-
lar one. Most of the recent heuristics for the graph
coloring problem started from an infeasible £ -colo-
ring and tried to make the solution feasible through
a sequence of color exchanges. In contrast, the ap-
proach in another reference[ 10], which was based
on tabu search, considered feasible but partial solu-
tions and tried to increase the size of the current
partial solution.

The heuristic coloring algorithm based on tabu
search™ is used to color the graph KG*(11,5) . Ex-
periment result shows that the graph KG*(11,5) is
10-colorable, which is a record-breaking result. Thus
we have,

Theorem 3 y(KG*(11,5)) < 10.

3 Discussion

To obtain the new lower bound or the exact
value of y(KG?(11,5)) needs a very large mount of
computation. To reduce the computation, it is easy
to see that we may obtain the equivalent independ-
ent sets and only consider the equivalent class.
Here, we say two independent sets A and B are e-
quivalent if there exists a permutation fon {1,2,-,
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11} such that the elements of A can be transformed
to those of B under f. For any independent set of
KG?(11,5), we may suppose that there exists an e-
quivalent independent set containing the element 1,
2,3,4,5. More detailed analyses in details will be
helpful, but still not enough to compute the chro-
matic number of KG*(11,5) in a reasonable time.

An idea to try is as follows. Suppose Vi is a
maximum independent set in KG*(11,5). As we
know | Vi | = 66. Let H be KG*(11,5) - V1. So the
order of H is 462 —66 =396. If H is 8-colorable, then
X(KGZ(H,S)) < 9, otherwise X(KGZ(H,S)) =
x(H) = 9. We have done some computation, and
found that we cannot determine if H is 8-colorable.
Although we can do similar discussion on
y(KG*(13,6)), it seems far from reach.

The graph KG*(13,6) is a 49-regular graph
with 1716 vertices. It seems challenging to deter-
mine the chromatic number of KG*(13,6), even its
independent number. Using the heuristic coloring al-
gorithm, we found that KG*(13,6) is 16-colorable
indicating that X(KGZ(IB,G)) < 16. Note by Theo-
rem 1 we have only X(KGZ(IB,G)) = 8, and
x(KG*(13,6)) = 9ifa(KG*(13,6)) < 214. In fact,
cl (KG*(13,6)) =8. It seems difficult to compute a
good upper bound for « (KG*(13,6)) .

Searching for an induced subgraph H for which

| V(H) | / « (H) is large,obtaining a lower bound
for the chromatic number of a graph will be a easier
way than dealing with the chromatic number direct-
ly. Note that computing upper bounds on chromatic
numbers may be used in algorithms on clique num-
bers, which can be used in researching lower
bounds for Ramsey numbers and their generaliza-
tions' "',
Let the subgraph of KG*(13,6) induced by the
first to 118th vertices be G,. By computing we found
that a(Gy) =13 and y(G,) < 10. Since 118 > 117 =
13 X 9, we obtain that X(GO) = 10. So IOZX(GO) <
x(KG*(13,6)) < 16.
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In fact,we can also obtain X(KG2(11 ,5)) =8in
this way.

It may be interesting to use KG*(2k + 1,%) as
benchmark of the Independent Set Problem.
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