结合张量特征和孪生支持向量机的群体行为识别 |
| |
作者姓名: | 胡根生 张乐军 张艳 |
| |
作者单位: | 安徽大学电子信息工程学院,安徽,合肥 230601 |
| |
基金项目: | 国家自然科学基金资助项目(61672032);安徽省重点实验室开放课题资助项目(2016-KFKT-003) |
| |
摘 要: | 给出一种结合张量特征和孪生支持向量机的群体行为识别算法,以提高对视频中群体行为识别的准确率.首先通过群成员关节点骨架的姿态结构信息和群成员的社会网络信息描述群体在每一帧中的行为,并采用张量形式表示;然后使用多路非线性特征映射分解张量核,并利用粒子群优化张量核孪生支持向量机的模型参数;最后结合张量特征和孪生支持向量机实现视频中的群体行为识别.CAD2数据集和自建数据集上的实验结果表明,张量特征能够有效地表示群体行为,相比经典算法,所提算法能有效提高群体行为识别的准确率.
|
关 键 词: | 群体行为识别 张量特征 孪生支持向量机 粒子群优化 |
收稿时间: | 2018-07-29 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《北京理工大学学报》浏览原始摘要信息 |
|
点击此处可从《北京理工大学学报》下载免费的PDF全文 |
|