$Al - SiC_{p}$ 复合材料磨损表面分形维数的研究^{*}

乔忠云

(淮海工学院东港学院,江苏连云港 222069)

摘 要:旨在通过对 SiCp 增强 Al 基复合材料磨损表面的分形研究,更深入研究亚微米 SiCp 增强 Al 基复合材料的摩擦磨损特性与分形维数的关系。按照结构函数法,用 MATLAB 软件 进行编程,得到复合材料双对数坐标图。研究标明,亚微米 SiCp 增强 Al 基复合材料的具有分 形特性,且其分形维数与材料的磨损量有关,随着磨损量的增加,分形维数亦趋于增大。 关键词:亚微米 SiCp 增强 Al 基复合材料;磨损;分形;结构函数法;分形维数

中图分类号:TG115.2 文献标识码:A 文章编号:1671-5322(2007)02-0055-04

Majumdar 等^[1]提出的粗糙表面弹塑性接触 分形模型,为定量地描述材料磨损表面分形与其 摩擦磨损特性的关系提供了新的途径. 该模型假 设表面粗糙度具有各向同性,但实际摩擦副相对 运动的确定性使磨损表面的粗糙度常常具有各向 异性.正因为如此,目前将分形几何理论用于处理 具有各向异性粗糙度表面的接触问题尚有困 难^[2]。SiC。增强铝基复合材料具有高强度、高模 量、耐磨损、小线胀系数、低密度等优异性能,且制 造成本低,在摩擦磨损领域显示出很好的应用前 景。本文以130 nm SiC, 为第2相,采用粉末冶金 方法制备出不同体积含量的 SiC_p/Al 基复合材 料^[3],研究其在油润滑条件下的耐磨行为;并利 用"分形"数学分析方法,对其磨损表面进行研 究,为 SiC。/Al 基复合材料制备及在滑动轴承、涡 轮等领域的应用提供理论依据。

本文作者采用表面形貌仪测定了不同组成的 Al-SiCp 基复合材料的摩擦表面,并计算其分形 维数,进而试图研究摩擦表面的分形特征以及与 摩擦学性能之间的关系。

1 试验

1.1 摩擦磨损试验

— 1 试样是尺寸为 20 mm × 8 mm × 8 mm,是从

二次加工中截取进行线切割加工而成的矩形方 块,先用砂纸研磨,再用金相试样抛光机 P-2 型 抛光几次。最后用丙酮溶液进行超声波清洗二 次,晾干,用 MA110 型电子分析天平称重。下试 样即对偶件用 40Cr 调质钢制成,尺寸为带 o16 mm 内孔的 50 mm × 10 mm 圆环,圆环热处理后 的硬度为295 HV,在对磨前先进行去毛刺,用丙 酮溶液超声波清洗,子天平称重。对 Al-SiC,复 合材料试验时载荷为150 N~1 200 N。下试样转 速 n 为 400 r/min, 润滑油为 20# 机械油, 对 Al -SiC,复合材料试验时,滴油速度为 40~48 滴/ min,磨损时间为4h;磨损后的试样用丙酮清洗, 再用 MA110 型电子分析天平称重,与实际密度相 除得到磨损体积损失,为便于比较,以磨损体积损 失评价耐磨性能。采用配有 AN10000 型 X 射线 能谱仪的 JXA-840A 型扫描电镜,观察分析摩擦 磨损表面等^[3]。

1.2 表面形貌测量

摩擦磨损试验后,采用德国产便携式双触针 表面粗糙度测量仪(Perthometer s3p),测出磨损 表面的表面形貌。其测量原理为:利用仪器的测

* 收稿日期:2006-12-10 作者简介:乔忠云(1973-),女,黑龙江铁力人,硕士,讲师,主要研究方向为机械制造及自动化方面教学与科研工作。 上得到所需采样点数的离散数据,以及所需的被 测表面的粗糙度高度评定参数值。对其轮廓曲线 进行分形特性分析,采样间距为0.8 μm,取样长 度为0.8 mm,评定长度为5.6 mm,采样点数为 5000,并分析其磨损机理。

2 SiC 增强 Al 基复合材料分形特性研究

2.1 结构函数法^[1]计算 SiC 增强 Al 基复合材料 分形维数

结构函数法用于复杂的分形曲线的计算,适 用于对随机过程数据的处理。该方法简单易行, 适合于计算机处理,是一种较实用的计算方法。 设在某一测量距离或测量时间序列上得到一族随 机变量数值 z(x),式中: τ 为 x 的任意增量, $\langle \rangle$ 表 示空间平均值.其中: $z(x+\tau)$ 为在 $x+\tau$ 位置轮廓 曲线的测量值;z(x)为在 x 位置轮廓曲线的测量 值:式中数据的确定方法为:若以等间距 τ 连续测 量某一距离的各点数值时,得到一组随机数据z $(1), z(2), \dots, z(k),$ 通过结构函数 $S(\tau)$ 确定分 形参数 D 和 G 无需进行谱分析,只要将由轮廓仪 采集的数据输入计算机进行简单处理.例如.将轮 廓仪测量的某一轮廓 Z(x)的模拟信号通过 A/D 转换后输入计算机,计算机的采样间距为 Δt ,共 采样 N 个, 记为 Z(xi) = Zi. (i = 0, 1, 2, 3, ..., N (-1)令式(8)中的 $\tau = n\Delta t$ (此处 n = 0, 1, 2, 3, 3) …),则结构函数: $S(\tau) = \langle [X(x + n\Delta t) - Z] \rangle$ $(x)]^{2} \rangle = \frac{1}{N-n} \sum_{i=0}^{N-n} (Z_{i+n} - Z_{i})^{2} \quad (1.1)$

针对若干尺度 τ 根据上式对轮廓曲线的离散信号 计算出相应的 $S(\tau)$,然后在双对数坐标中得 logS (τ) ~ log τ 直线的斜率 K,则分形维数^[6]:

$$logs(\tau) = logC + (4 - 2D) log\tau$$
 (1.2)
分形维数 D 可由直线的斜率 K 确定:

$$D = 2 - K/2 \tag{1.3}$$

由式(1.3)也可确定一个表面轮廓是否是分 形的,即如果轮廓的结构函数测度值与尺度值在 双对数坐标中的线性关系好,说明有分形特征,否 则没有分形特征。

2.2 SiC, 增强 Al 基复合材料的分形特性

对采集的离散数据用 MATLAB^[4]软件导入, 并利用(1.1)的结构函数法仿真得到如下曲线:

从图结构函数双对数坐标图上可以观察到, 图线在一定的范围内基本上呈现线性关系,说明 磨损表面具有分形特性^[6]。但是当τ增大到一定

程度时,直线关系出现波动。这说明分形曲线只 在一定范围内存在。

3 分形维数的计算

3.1 可能无标度区的计算^[5]

分形是指局部与整体具有自相似性的图形。

分形仅在一定尺度范围、一定层次中才表现出分 形特性,其两端都受到某种特征尺寸的限制,这个 具有自相似的范围就称为"无标度区"。对于工 程表面,即使具有分形特征,也只是在一定的尺度 范围内成立。因此说,分形的应用研究中需要确 定研究对象是否存在无标度区的范围,从而在该 范围内求出分形维数^[6]。

确定无标度区间的方法很多,如人工判定法、 相关系数检验法,强化系数检验法,拟合误差法、 分形维数误差法、自相似比法等等。目前确定无 标度区间上限和下限的普遍做法是:在双对数坐 标中绘出测度 $M(\tau)$ 和尺度的对数值,凭观察找 出线性关系较好的区间作为无标度区间。把所采 集的关于表面轮廓的离散数据(xj, y)换算成所采 用的测度和尺度的对数值,记为(fi, ti), i = 1, 2,…,N。求解 m和 $n, 1 \le m < n \le N$,使得在三个区 域{t1, tm - 1}, {tm, tn}, {tn + 1, tN}内分别进行 最小二乖法拟合所得三条直线的偏差之和达到最 小,即:

$$F(m,n) = \min \sum_{k=1}^{3} Q_k$$
 (2.1)

很显然,满足式(2.1)的 m,n 所得的区间(tm,tn) 即为可能的无标度区间。采用结构函数法计算实 际粗糙表面的分形维数,相关长度 τ 大到一定程 度,点集 $\{(f_i,t_i),i>n\}$ 开始偏离直线,且它们所 形成的轨迹没有明显的规律;因此,在进行具体操 作时,首先估计出 n 的值(求 f_i 最大值所对应的 i作为 n 的值),再往前取一定数量(N-n)的点 (其轨迹最好也呈直线),然后按上述方法用 C 语 言编程确定真正的无标度区间。

3.2 实际无标度区的确定^[7]

为了确定无标度区,在实际应用中,采用相关 系数法检验,具体算法如下:在双对数图中,分别 以 MATLAB 中的输出点为坐标值,以 20 个点或 40 个点为一组划分区间,如1~40,40~60,60~ 80 等。连续对各组的点用最小二乘法进行线性 回归,如果回归直线的斜率出现负值,或斜率的变 化趋势出现波动,则说明原来有线性增加趋势开 始变为下降趋势,或是原来有线性增加的趋势加 大。将该区间的前一点定为转折点,取起点到转 折点的区间为无标度区间,具体计算分别见表1、 表2。

表1 样块无标度区间的确定

Table 1	Ľ	The	fixing	of	scaling	range
---------	---	-----	--------	----	---------	-------

长地伊县	回归点		同心古建士祖、	杜长上
件庆代与	起	止	四归且线刀在 4	我们从
5% SiC (14)300	N ¹	40	y = 0.6964x + 2.1257	40
570510p(14 µm)500	` 40	60 g	y = -0.1654x+4.113	40

表 2	样块无标度区间和分形维数的确定
Table 2	2 The fixing of scaling range and D

样块代号	回归点	回归直线方程	无标度区 回归直线方程	分形维数 D
5%SiC _p (14 μm)150 N	1~40	y = 0.6465x + 2.0164	y = 0. 646 5x + 2. 016 4 转折点 40	
	$40 \sim 60$		y = 0.6465 x + 2.0164	1.0/0 8

在无标度区间内,根据转折点40,使用最小 二乘法对40点数据进行直线拟合,得到直线方程 为y=0.6964x+2.1257,则直线斜率k=0.6964, 再根据式(1.3)即可求得分形维数D=1.6518。 计算结果用 Matlab 软件完成。

通过表3比较复合材料分形维数与粗糙度可 以看出,磨损表面的粗糙度发生变化,分形维数也 相应地变化,说明分形维数能综合反映表面轮廓 的不规则形状和充满空间的能力。从复合材料分 形维数与磨损量可以看出,复合材料磨损表面磨 损量发生变化,分形维数也相应地变化,说明分形 维数能综合反映表面轮廓的不规则形状。

表 3 试件的分形维数与磨损量对照表

Table 3 Contrastion between fractal

dimension and wear volume

样块代号	磨损量	分形维数 D	粗糙度 Ra/µm
5% SiC _P (14 μm)150 N	0.002 0	1.676 8	3.86
$5\% SiC_P (14 \ \mu m) 300 \ N$	0.001 0	1.651 8	2.64

4 磨损机理分析

比较图 5 可以看出,随载荷的增加,表层碾压 和犁沟更加严重,磨面存在 SiC, 脱落的孔洞和裂 纹,是典型的粘着和磨粒混合磨损。由于对磨件 强烈碾压导致犁沟、孔洞和裂纹被碾平变浅。这

图 5 Al - 5% SiC_p(14 μm)在各种载荷下的磨损表面形貌 Fig. 5 Al - 5% SiC_p(14 μm) wear surface morphologies under varied load

说明,随着摩擦载荷增加,SiC,破裂、脱落增加,试 样表层和次表层塑变增加,摩擦时金属间的直接 接触和粘着面积增加,且脱落的SiC,增加、犁削 作用增加,因而其磨损量增加,表面结构也变得更 加微细,故表面分形维数增大。同时可以看出,随 SiC,含量的增加,粘着和碾压变形减弱,但参与微 切削的 SiC_p(脱落、破裂的 SiC_p和基体中支撑作 用的 SiC_p)增加,同时摩擦过程中承受接触应力 的硬质点数量的增加,故磨损量增加的同时,微切 削产生的犁沟等深度减少而数量增加,磨损表面 微观结构更微细,表面分形维数亦增大。

参考文献:

- A. Majumdar, B. B. Bhushan Fractal model of elastic plastic contact between rough surfaces. J Tribol[J]. (ASME) Journal of Tribology. 1991, 13:1-11.
- [2] 陈国安, 葛世荣, 王军祥. 分形理论在摩擦学研究中的应用[J]. 摩擦学学报, 1998, 18 (2): 179-184.
- [3] 居志兰. AL 基复合材料制备组织及性能与特征研究[D]. 镇江:江苏大学, 2003.
- [4] 乔忠云, 戈晓岚. 亚微米 SiCP 增强 AI 基复合材料磨损表面分形特性研究[J]. 煤矿机械, 2006, 27(6): 970-972.
- [5] 张威. MATLAB 基础与编程入门[M]. 西安: 西安电子科技大学出版社, 2004.
- [6] 贺林. 锡基巴氏合金磨损表面的分形与磨损率[J]. 摩擦学学报, 1998, 18(3): 375-384.
- [7] 刘亚俊. 基于分形理论的 SiCp 增强金属基复合材料切削加工研究[D]. 广州:华南理工大学,2002.
- [8] 何云红.分形、小波理论用于磨削加工表面的特性研究[D].南京:南京农业大学,2003.

Fractal dimension investigation on wear behaviour of $Al - SiC_p$ composite

QIAO Zhong - yun

(Donggang College, Huaihai Institute of Technology, Jiangsu Lianyungang 22069, China)

Abstract: The purpose of this paper is to provide a deeper understanding of the wear behaviour of SiC_p/Al composites through a detailed examination of the wear surface and the sub – surface regions. Such an examination indicates that fractal dimension of micrometer SiC_p reinforced Al matrix composite is related to wear volumne. According to the Structure function method, we can program with Matlab to deduce the fractal structure curve. With the increase of SiC_p wear volume, the fractal dimension is growing bigger and bigger.

Keywords: SiCp reinforced Al matrix composite; wear; fractals; structure function; fractal dimension