# 对流层散射信道下多天线分集 OFDM 系统研究

陈西宏1, 胡茂凯1,2, 薛伦生1, 张 群3

(1. 空军工程大学防空反导学院,陕西西安,710051;2.95948部队,甘肃酒泉,732750;3. 空军工程大学信息与导航学院,陕西西安,710077)

**摘要** 将OFDM 技术应用于对流层散射通信可以提高散射通信容量,但子载波间干扰(ICI)成为降低系统性能的主要因素,为此引入天线分集技术以抑制 ICI 的影响。在建立散射信道模型基础上,分析与求解了 OFDM 系统的 ICI 数学统计特性,然后引入天线分集技术,分析与推导了系统的误码率,通过仿真,对比了采用天线分集技术前后 OFDM 系统的误码率性能。结果表明:ICI 随归一化多普勒扩展的增大而迅速增加,从而使 OFDM 系统产生误码平台,分集技术可以克服以上问题,在归一化多普勒频移 0.02,信噪比 20 dB 时,2 重分集能使误码率降低 2 个数量级以上,3 重分集使误码率降低 4 个数量级。

关键词 对流层散射;正交频分复用;子载波间干扰;多天线分集;误码率

**DOI** 10. 3969/j. issn. 1009-3516. 2014. 01. 012

**中图分类号** TN911 文献标志码 A 文章编号 1009-3516(2014)01-0053-04

#### An Analysis of OFDM System under Troposcatter Fading with Multi-antenna Diversity

CHEN Xi-hong<sup>1</sup>, HU Mao-kai<sup>1,2</sup>, XUE Lun-sheng<sup>1</sup>, ZHANG Qun<sup>3</sup>

(1. Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China;2. Unit 95948 of PLA, Jiuquan, 732750, Gansu, China;

3. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China)

Abstract: The application of OFDM in troposcatter communication can enlarge the tropo communication capacity. Meanwhile, Inter Carrier Interference (ICI) of OFDM system is the major drawback to degrade OFDM system performance. As a result, the multi-antenna diversity techniques are introduced and the OFDM with Maximal Ratio Combining (MRC) diversity under tropo fading channel is investigated. Firstly, the tropo channel model is established, then, system ICI is investigated. OFDM system with MRC diversity under tropo channel is investigated, and the system SER is derived. Simulation results show that ICI can degrade the SER performance and introduce symbol error floor while multi-antenna diversity can solve the problem above. When normalized Doppler spread equals 0.02 and signal to noise ratio equals 20dB, dual diversity can decrease SER by two orders of magnitude and triplex diversity with four orders of magnitude.

Key words: troposcatter; OFDM; inter-carrier interference; multi-antenna diversity; SER

**引用格式:**陈西宏,胡茂凯,薛伦生,等.对流层散射信道下多天线分集 OFDM 系统研究[J]. 空军工程大学学报:自然科学版,2014,15(1):53-56. CHEN Xihong, HU Maokai, XUE Lunsheng, et al. An analysis of OFDM system under troposcatter fading with multi-antenna diversity [J]. Journal of air force engineering university: natural science edition, 2014, 15(1):53-56.

收稿日期:2013-01-22

基金项目:国家自然科学基金资助项目(60971100)

作者简介:陈西宏(1961-),男,陕西西安人,教授,博士生导师,主要从事导弹工程和通信技术研究.E-mail: tgyxhmk@163.com

对流层散射通信具有单跳跨距大、保密性好、受 环境影响小等优点,在民用和军事通信领域有着广 泛应用。目前大容量散射通信系统成为研究的热 点,正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术具有良好的抗多径和符 号间干扰(Inter Symbol Interference,ISI)能力,同 时频谱效率很高,引起了业内的关注<sup>[1-3]</sup>。OFDM 技术通过扩展符号周期来提高系统的抗多径和 ISI 的能力,但无线信道的时变性会破坏系统子载波间 的正交性,形成载波间干扰(Inter Carrier Interference,ICI)。文献[4]通过对 OFDM 系统 ICI 的分析 研究,证实 ICI 明显降低了 OFDM 系统性能。文献 [5~6]分别对抑制 OFDM 系统的 ICI 进行了研究 并提出了各自的方法。

面对卫星、散射等具有衰落及多径效应的无线 通信方式,分集技术是最为常用的技术。Win 和 Winter 在文献[7~8]中对最大比合并和选择性合 并技术作了具体的分析,证实线性分集技术可有效 提升系统性能,目前,许多文献研究了 OFDM 系统 的 ICI 及其抑制方法,对频率分集 OFDM 系统也有 初步的研究,但未见散射衰落信道下基于天线分集 的 OFDM 系统研究,本文对此展开研究。

# 1 对流层散射信道

本文主要研究快衰落特性对系统性能的影响, 快衰落常用多径效应和多普勒效应来描述,典型的 信道模型有 Kailath 提出的抽头延迟线散射信道模 型和 Sunde 提出的 Sunde 模型,本文采用第一种模 型,即抽头延迟线模型<sup>[1]</sup>。

1)多径传播引起的时延扩展。收发双方发射的 电磁波在对流层交会,散射体被电波激励后成为多 个二次辐射源,接收端接收的电磁波是多个二次源 发出的多径信号。常用平均时延扩展 $\bar{\tau}$ 、均方根时 延扩展 $\sigma_{r}$ 和最大时延扩展 $\tau_{max}$ 来描述。

2)多普勒频移。在对流层散射通信中,多普勒 频移不但与收发端的移动有关,还与散射介质的湍 流运动有关,散射体杂乱无章的随机运动导致接收 信号频率偏移。

3) 瑞利衰落。经历散射信道传播的接收信号的 振幅是一个随机变量,这个随机变量的概率分布服 从瑞利分布。信道的冲激响应可以表示为:

$$h(t,\tau) = \sum_{l=1}^{L} h_l(t) \delta(t-\tau_l) \tau$$
(1)

式中:h<sub>l</sub>(t)为第 l 径的信道增益;L 为多径数目;τ<sub>l</sub> 为第 l 径的延时。对流层散射通信中,信道参数与通 信距离 d 有着密切的关系,最大多径延时 τ<sub>max</sub>与多普 勒频移  $f_D$  的取值随 d 的变化而变化,当 d 为几十 km 时,一般认为  $\tau_{max} < 1 \mu s$ ,  $f_D$  为几 Hz,随着 d 的增 加,  $\tau$  会相应的增加,其值一般在零点几  $\mu s$  至几  $\mu s$  的 范围,而  $f_D$  会增加到几十 Hz 至数百 Hz。

### 2 OFDM 原理及 ICI 分析

OFDM 将高速串行数据流在一组低速正交子 载波上并行传输,子信道调制解调通过快速傅里叶 反变换(IFFT)和快速傅里叶变换(FFT)实现,子载 波间的正交性允许频谱重叠,提高了频谱效率,具体 来说<sup>[2]</sup>,发送端先将待传输数字信号转换成子载波 幅度和相位的映射,设映射符号长度为 $T_s$ , N 个映 射符号经串并变换后送入 IFFT 模块进行 N 点 IF-FT 变换,为最大限度的消除符号间干扰,在经并串 变换后形成的 OFDM 符号之间循环前缀(Cyclic Prefix,CP),如果 CP 长度大于无线信道的最大时 延扩展,则当前符号的多径分量就不会对下一个符 号造成干扰。 $t = kT_s$  时刻,OFDM 块传输的符号 序列可表示为:

$$x(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} a(n) e^{j(2\pi nk/N)}$$
$$0 \leqslant k \leqslant N + G - 1$$
(2)

式中:N为子载波数;a(n)为映射符号,服从独立同分布。经散射多径信道后,接收信号为:

$$r(k) = \sum_{m=0}^{M} h_m(k) x (k-m)$$
  
$$0 \leq k \leq N + G - 1$$
(3)

式中: $h_m(k)$ 为 k 时刻信道第 m 个抽头系数,移除 CP 后的信号用 z(k)表示,即  $z(k) = r(G + (k - G)_N)$ , $(k - G)_N$ 表示 k - G 对模 N 的余数,然后对 信号序列作 FFT 变换,得到解调信号序列为:

$$Z_{l} = \sum_{n=0}^{N} \sum_{m=0}^{M-1} a(n) H_{m}(n-l) e^{-j(2\pi nm/N)}$$

$$0 \leqslant l \leqslant N-1$$
(4)

$$H_{m}(n-l) = \frac{1}{N} \sum_{k=0}^{N-1} h_{m,G+(k-G)N} e^{j(2\pi k(n-l)/N)}$$
(5)

与以往文献的分析一样,将 ICI 建模为加性干扰<sup>[4-6]</sup>,因此可将式(4) 表示为:

$$Z_i = \beta_i a_i + c_i \tag{6}$$

式中: $\beta_l$ 为乘性干扰; $c_l$ 、ICI分别为:

$$\beta_{l} = \sum_{m=0}^{M-1} H_{m}(0) e^{-j(2\pi lm/N)}$$
(7)

$$c_{l} = \sum_{n \neq l} \sum_{m=0}^{M-1} a(n) H_{m}(n-l) e^{-j(2\pi nm/N)}$$
(8)

当 N 取值较大时,根据中心极限定理,可将 ICI 建模为高斯随机变量。a(n)及  $H_m(n-l)$ 为零均 值的独立随机变量,则  $E[a(n)] = 0, E[c_l] = 0, 设$  映射符号能量为  $E_s$ ,则  $E[a(n)a(n')^*] = E_s \delta_{nn'}$ , 而子载波间干扰  $c_l$  的相关函数为:

$$E[c_{l}c_{l+l'}] = E_{s} \sum_{n \neq l, l+l'} \sum_{m=0}^{m-1} E[H_{m}(n - l)H_{m}^{*}(n - l - l')]$$

$$(9)$$

M 1

在此假设 $\sum_{m=0}^{\infty} E[|h_m(k)|_2] = 1$ 和各向同性散射,则上式相关函数为:

$$E[c_{l}c_{l+l'}] = E_{s}\delta_{l'} - \frac{E_{s}}{N^{2}}\sum_{k=0}^{N-1}\sum_{k'=0}^{N-1}J_{0}(2\pi f_{D}T_{s}(k-1))$$

k'))[ $e^{i2\pi k' t'/N} + (1 - \delta_r)e^{i2\pi kt'/N}$ ] (10) 式中: $f_D$ 为信道最大多普勒频移; $J_0(\bullet)$ 为零阶第1 类贝塞尔函数; $c_l$ 为零均值的高斯随机变量,则此时 的平均功率与其方差相等,于是 ICI 功率为:

$$E[|c_{l}|^{2}] = E_{s} - \frac{E_{s}}{N^{2}} \{N + 2\sum_{i=1}^{N-1} (N-i) J_{0} (2\pi f_{D} T_{s} i)\}$$
(11)

可见 ICI 功率与映射符号能量  $E_s$ 、子载波数 N、映射符号长度  $T_s$  和多普勒频移  $f_D$  有关。

# 3 多天线分集 OFDM 系统性能

针对 OFDM 系统 ICI 问题,本文分析多天线分 集对 ICI 的抑制和对系统性能的改善。采用天线分 集接收时,各接收天线的衰落信号相互独立,接收端 对其进行合并处理。

常见的分集合并方式有最大比合并(MRC)、选择性合并(SC)和等增益合并(EGC),3者的复杂度和性能各有差异。MRC对传输相位的估计要求较高,具有较高的复杂度;SC简单而性能略有下降;EGC则将检测到的多径信号作等增益合并。SC虽然具有较低复杂度,但无法提高系统对抗ICI能力,因为ICI取决于每个子信道的变化快慢,而不是信号功率,因此考虑MRC方法。

考虑 D 个天线的情况,不同天线发射信号经历 互不相关的衰落后分别进入 D 个 OFDM 解调器, 对经 FFT 变换后的 D 路信号进行最大比合并处 理,其判决变量此时变为:

$$Z_{l} = \sum_{d=1}^{D} |\beta_{l}^{d}|^{2} a_{l} + \beta_{l}^{d*} c_{l}^{d}$$
(12)

为获得系统的误码率性能,参考文献[13]的方法,需要知道接收信号信噪比的概率密度函数,首先 考虑简单情况,即 D=1,此时对于呈现瑞利衰落的 散射信道来说,接收信号的瞬时信噪比(SNR)的概 率密度函数为:

$$p_{\gamma_s}(x) = \frac{1}{\overline{\gamma}_s} \exp\left[-\frac{x}{\overline{\gamma}_s}\right], x > 0$$
(13)

式中:x 为信号的瞬时信噪比; $\overline{\gamma}_s$  为平均信噪比。D >1 时(多天线分集),接收信号瞬时信噪比的概率 密度函数变为:

$$p_{\gamma_{s}}(x) = \frac{1}{(D-1)(\overline{\gamma}_{c})^{D}} x^{D-1} \exp\left[-\frac{x}{\gamma_{c}}\right], x > 0 \quad (14)$$
  
式中  $\overline{\gamma}_{c}$  为每个分集信道上的平均信噪比。

考虑常见的 16-QAM 映射方案,AWGN 信道下,16-QAM 系统的误码率(SER)为<sup>[9]</sup>:

$$P_{s}(\boldsymbol{\gamma}_{s}) = 3Q\left(\sqrt{\frac{\boldsymbol{\gamma}_{s}}{5}}\right) - \frac{9}{4}Q^{2}\left(\sqrt{\frac{\boldsymbol{\gamma}_{s}}{5}}\right) \qquad (15)$$

式中, $\gamma_s = E_s/N_o$ 为信号的瞬时信噪比(SNR),对应的散射多径衰落信道下的 SER 为:

$$P_{s} = \int_{0}^{\infty} P_{s}(x) p_{\gamma_{s}}(x) dx \qquad (16)$$

式中  $p_{\gamma_s}(x)$ 为瞬时信噪比 x 的概率密度函数,将式 (13)~式(14)代入上式,可以得到系统的 SER。

# 4 仿真分析

设信道的最大延时小于 4 μs,最大多普勒频移 不超过 200 Hz。

首先研究散射衰落信道下 OFDM 系统的 ICI, 将有用信号功率和 ICI 功率之比称为信干比(SIR), 系统子载波上的符号周期为  $NT_s$ ,则归一化多普勒 扩展为  $f_DNT_s$ 。考虑 SIR 与系统归一化多普勒扩 展之间的关系,见图 1,仿真和理论值能很好的吻 合,随着  $f_DNT_s$ 的增大,SIR 逐渐降低,这是因为  $f_DNT_s$ 增加使 ICI 变得严重,特别是对于  $f_DNT_s$  $\in [0,0.02]$ 时,其值的微小增加都将显著降低 SIR, 比如,无多普勒频移时,SIR 接近 60 dB, $f_DNT_s =$ 0.005 时,SIR=45 dB, $f_DNT_s =$ 0.01 时,SIR=38 dB, $f_DNT_s =$ 0.02 时,SIR=31 dB。与[0,0.02]区 间上 SIR 的显著变化相比, $f_DNT_s >$ 0.05 时,SIR 变化较为缓慢, $f_DNT_s =$ 0.05 时的 SIR=24 dB,在  $f_DNT_s =$ 0.1 处的 SIR=19 dB,二者之间的 SIR 性 能损失增益相差不大,约为 5 dB。



下面分析 OFDM 系统的 SER 性能,首先考虑 分集前后 OFDM 系统误码率与归一化多普勒频移 之间的关系,见图 2,SNR=20 dB,可见,仿真值和 理论结果能较好的吻合,D=1时,系统的 SER 较 高,即使  $f_DNT_s=0$ 时,SER 大于  $10^{-3}$ , $f_DNT_s>$ 0.03时,SER> $10^{-2}$ ;与无分集系统相比,分集技术 能有效的降低系统的 SER。D=2时,不考虑归一 化多普勒频移时,系统的 SER< $10^{-6}$ , $f_DNT_s$ < 0.035时,系统误码率均小于 $\times 10^{-4}$ ;D=3,无归一 化多普勒频移时,系统 SER< $10^{-8}$ ,当 $f_DNT_s$ < 0.03时,系统误码率均小于  $10^{-6}$ ,可见分集技术能 有效的降低 OFDM 系统的误码率,且随着分集重数 的增加,系统误码率性能变好,但分集重数的增加将 同时增加系统实现的复杂度。





对多天线分集 16QAM-OFDM 系统误码率性 能进行仿真分析,  $f_DNT_s = 0.05$ , D 取不同值。由 图 3 可见, 仿真和理论值能很好的吻合, 未采用天线 分集时的系统误码率性能较差, 出现了误码率平层, 分集技术的采用显著降低了系统误码率, 比如当 SNR=22 dB 时, D=2 的系统 SER< $10^{-4}$ , 而 D=1的系统 SER> $10^{-2}$ , 随着分集重数的增加, 系统误 码率将进一步降低, SNR=23 dB, D=3 时的系统 SER< $10^{-6}$ 。即使在较为恶劣的散射信道参数下, 归一化多普勒扩展  $f_DNT_s < 0.05$ , 此时的系统 SER 将更低。



图 3 多天线分集 OFDM 系统误码率性能

Fig. 3 SER of OFDM with multi-antenna diversity

### 5 结语

本文分析与推导了散射衰落信道环境下基于多 天线分集的 OFDM 系统误码率。仿真结果表明,信 道的归一化多普勒扩展 使 ICI 迅速增大,系统产生 误码率平台效应,而分集技术能够抑制系统的 ICI, 使误码率降低 2 个数量级以上,且分集重数越高,误 码率越低,但此时的系统复杂度也随之升高。

#### 参考文献:

- Hu M K, Chen X H. New generation troposcatter communication based on OFDM modulation [C]// ICEMI 2009 preceedings. Beijing: IEEE press, 2009: 164-167.
- [2] 姚文珺.OFDM 技术在对流层散射系统中的应用[J]. 无线电工程,2007,37(2):58-60.
  YAO Wenjun. Application of OFDM technology in troposcatter system[J]. Radio engineering,2007,37 (2):58-60.(in Chinese)
- [3] 陈西宏,刘强,胡茂凯.OFDM 中基于粒子群优化的限幅算法[J].空军工程大学学报:自然科学版,2010,11 (2):52-56.
  CHEN Xihong, LIU Qiang, HU Maokai. A clipping algorithm based on PSO in OFDM[J]. Journal of air force engineering university: natural science edition, 2010,11(2):52-56.(in Chinese)
- [4] Le K. Insights on ICI and its effects on OFDM systems[J]. Digital signal process, 2008, 18(6):876-884.
- [5] Ghassemi A, Gulliver T A. Intercarrier interference reduction in OFDM systems using low complexity selective mapping[J].IEEE transactions on communications, 2009,57(6):1608-1611.
- [6] Wang Chin Liang, Huang Yu Chih. Intercarrier interference cancellation using general phase rotated conjugate transmission for OFDM systems[J].IEEE tranctions on communications, 2010, 58(3):812-819.
- [7] Win M, Winters J. Analysis of hybrid selection/maximal-ratio combining in rayleigh fading[J]. IEEE transactions on communications, 1999, 47(12):1773-1776. (in Chinese)
- [8] Win M, Winters J. Virtual branch analysis of symbol error probability for hybrid selection/maximal-ratio combining in rayleigh fading[J]. IEEE transactions on communications 2001, 49(11):1926-1934.
- [9] Simon M K, Alouini M S. A unified approach to the performance analysis of digital communication over generalized fading[J].Proceeding of the IEEE, 1998, 86(9):1860-1877.

(编辑:田新华)