广西科学 Guangxi Sciences 2012,19(2):134~138

$La_{0.7} Zr_{0.1} Mg_{0.2} Ni_{3.4-x} Co_x Fe_{0.1}$ 合金的制备与电化学性 能研究^{*}

Preparation and Electrochemical Properties of $La_{0.7} Zr_{0.1}$ Mg_{0.2} Ni_{3.4-x} Co_x Fe_{0.1} Alloy

蓝志强 闫文宁 覃昌生 卢 照 蔣津辉 郭 进**

LAN Zhi-qiang ,YAN Wen-ning ,QIN Chang-sheng ,LU Zhao ,JIANG Jin-hui ,GUO Jin

(有色金属及材料加工新技术教育部重点实验室,广西大学物理科学与工程技术学院,广西南宁 530004)

(Key Laboratory of New Processing Technology for Nonferrous Metals and Materials ,Ministry of Education ,College of Physical Science and Technology ,Guangxi University ,Nanning ,Guangxi ,530004 ,China)

摘要: 在氩气保护下采用电磁感应熔炼制备 $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x=0.15, 0.25, 0.35, 0.45)$ 合金,研究 合金的相结构,以及 Co 元素部分取代 Ni 元素对合金的气态储氢性能和电化学性能的影响。结果表明,合金主 要由 $LaNi_5$ 、 $LaNi_2$ 以及 La_2MgNi_9 相组成。合金电极的最大放电容量分别为 346.7mAh/g(x=0.15)、320.3mAh/g(x=0.25)、363.0mAh/g(x=0.35)和 313.3mAh/g(x=0.45) 经过 65 个充放电循环后,合金电极的容量保持 率从 63.0% (x=0.15)增加到 80.2% (x=0.35),然后再下降到 75.0% (x=0.45)。 $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.15}Co_{0.25}Fe_{0.1}$ 合金具有较高的高倍率放电性能(HRD_{1200} %=67.3)和较大的极限电流密度(I_L = 386.8 mA/g)。显示出其良好的电化学动力学性能。

关键词:储氢合金 储氢性能 电化学性能

中图法分类号: TG139.7 文献标识码: A 文章编号: 1005-9164(2012) 02-0134-05

Abstract: $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15 \ p.25 \ p.35 \ p.45)$ alloys were prepared by electromagnetic induction melting under Ar atmosphere. The results showed that the alloys were mainly composed of $LaNi_5$, $LaNi_2$ and La_2MgNi_9 phases. The electrochemical measurements showed that the maximum discharge capacity of the alloy electrodes were 346.7mAh/g(x = 0.15) 320.3mAh/g(x = 0.25) 363.0mAh/g(x = 0.35) and 313.3mAh/g(x = 0.45) , respectively. The cyclic capacity retention rate C_{65}/C_{max} of alloy electrodes first increased to 80.2% (x = 0.35) from 63.0% (x = 0.15) , and then decreased to 75.0% (x = 0.45). For $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.15}Co_{0.25}Fe_{0.1}$ alloy, the high rate dischargeability was 67.3% and the limiting current density was 386.8mA/g. These results indicated that the electrochemical kinetics and performance of $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.15}Co_{0.25}Fe_{0.1}$ alloy were better among $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15 \ p.25 \ p.35 \ p.45)$ alloys.

Key words: Hydrogen storage alloy ,Hydrogen storage property ,electrochemical performance

近年来,AB,型和 AB2型储氢合金被广泛研究 并成功应用于 MH/Ni 二次电池负极材料,但是两种 储氢合金都存在各自的缺陷,例如,AB₅型合金电极的放电容量有限,实际放电容量已达到其理论值 (372 mAh/g)的85%左右^[1,2],进一步提高其实际放 电容量已成为科研难题,而AB₂型(Zr-Ti-V系)合金 电极成本较高和具有不容易活化的特点^[3],不能满 足更多用户的需求。La-Mg-Ni系储氢合金由于具有 低成本高容量的特点而成为 MH/Ni 二次电池负极材 料的研究热点。与传统AB₅型和AB₂型储氢合金电 极相比,La-Mg-Ni 系储氢合金电极的主要缺陷是其 Guangxi Sciences, Vol. 19 No. 2 May 2012

收稿日期:2012-01-10

修回日期:2012-02-16

作者简介:蓝志强(1980-),男,博士,主要从事储氢材料研究。

^{*} 国家自然科学基金项目(50861003 51071054),广西自然科学基金重 点项目(2010GXNSFD013004),广西大学科研基金项目 (XJZ100266)资助。

^{**}通讯作者: E-mail: guojin@gxu.edu.cn。

充放电循环稳定性较差^[4]。为了改善La-Mg-Ni 系储 氢合金电极的性能,常常以Co、Fe、Ce、Pr、Mn以及 Ca 等元素,通过对 A 侧或者 B 侧元素的优化,加以 改善合金电极的电化学性能^[5~12]。经研究发现, La_{0.67}Mg_{0.33}Ni_{2.25}Co_{0.75} 合金电极的放电容量达 391.62 mAh/g 经过70 个充放电循环 ,合金电极的容 量保持率为 70.62%^[3]。以 Al 取代 La_{0.7}Mg_{0.3}Ni_{2.6}Co_{0.5} 合金中 Co 元素发现能降低合金的吸放氢平台和吸 放氢的滞后系数,提高合金电化学循环稳定性^[5]。 以适量的 Mn 取代 La_{0.7}Mg_{0.3}Ni_{2.55}Co_{0.45} 中的 Ni 能提 高合金的吸氢量以及合金电极的电化学容量^[6]。但 是 Mn 加入不利于合金电极电化学循环稳定性。以 Ca 替代 A 侧元素 Mg 制备的 La_{0.7} Mg_{0.3-x} Ca_x Ni_{2.8} Co_{0.5} (x=0~0.10) 合金 随着 Ca 含量增加 合金的电化 学性能循环稳定性先增加后降低,当 x = 0.05 时,合 金的电化学性能最好 与 La 和 Mg 相比 Ca 的电负性 较强 在碱性溶液中 其先腐蚀从而有效地阻止 La 和 Mg 腐蚀 提高合金电极的电化学性能,但是过量的 Ca 会加速合金电极的腐蚀,从而导致电化学性能下 降^[7]。用少量 Zr 取代 La 能有效地提高 $La_{07x}Zr_xMg_{03}Ni_{24}Mn_{01}Co_{07}Al_{02}$ 合金电极的循环稳定性和 高倍率放电性能^[10]。在La_{0.4}Ce_{0.3}Mg_{0.3}Ni_{2.975-x}Mn_xCo_{0.525}(x =0.1~0.4) 合金中 当 x =0.3 时 合金电极的高倍率放电性 能最好 (HRD1000 = 74%)^[12]。Co对La-Mg-Ni型合金电极的 循环稳定性有重要的作用 由于 Co 的成本较高 所以适量的 Co不仅能改善合金电极的电化学综合性能 也能有效地降 低电极的制备成本 ,为此 我们采用电磁感应悬浮炉制备 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x=0.15 0.25 0.35 0.45) 合金 研 究 Co 元素部分取代 Ni 元素对 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4*}Co_xFe_{0.1} (x = 0.15 0.25 0.35 0.45) 合金的气态储氢性能和电化学性 能的影响。

1 实验部分

在 Ar 气保护下,采用高频感应悬浮炉制备 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15,0.25,0.35, 0.45)合金 原料金属的纯度均大于 99.9%。采用日 本理学 Rigaku/D/MAX 2500V型 X 射线衍射仪对 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15 0.25 0.35 0. 45)合金的相结构进行测试,测试工作电压 40kV,工 作电流 150 mA 扫描范围(2θ)为 20~80°,衍射数据 用 Jade5.0软件进行 Rietveld 全谱拟合分析以获得相 应晶胞参数。合金的气态储氢性能在 P-C-T 自动测 试仪上测试,合金电极是将合金粉末与羟基镍粉按 1 :4 的质量比均匀混合后压制而成,测试时以 Hg/ HgO 为参比,以 Ni(OH)₂/NiOOH 为对电极,6mol/L 广西科学 2012年5月 第19卷第2期 KOH 为电解液。经 100mA/g 恒流充电 5h,静置 10min,再以 80mA/g 恒流放电,放电截止电压为-0. 5V(vsHg/HgO),当电极充分活化后,充电电流改为 4h,以上测试通过 DC-5 电池测试仪采集数据。

合金电极的高倍率性能 ($HRD_n = C_n/(C_n + C_{80}$) ×100%) 在 Arbin 电化学测试仪上进行测试,将合金 电极以 100mA/g 恒流充电 4h,再分别以 300 mA/g、 500mA/g、700 mA/g、900 mA/g、1200mA/g 恒流放电 至-0.5V(vsHg/HgO)。在 GAMRY 电化学测试仪上 测试合金电极的循环伏安特性(CV)、Tafel 曲线。CV 扫描速率为 5 mV • s⁻¹,扫描范围为-1.2 ~ 0 V (vsHg/HgO),Tafel 曲线扫描速率为 10mV • s⁻¹,扫描 范围为-0.3 ~ 1.0 V(vs 开路电压),以上测试均在合 金电极充分活化后进行。

2 结果与分析

2.1 合金相结构

从图 1 可以看出 $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x$ =0.15 ρ . 25 ρ . 35 ρ . 45) 合金的主相为 $LaNi_5 \ LaNi_2$ 以及 La_2MgNi_9 相 ,当 x = 0.35 时 ,合金中有 La_2Ni_7 相 出现。由表 1 可知 ,合金主相 $LaNi_5 \ LaNi_2$ 和 La_2MgNi_9 的晶胞体积先增大后减小 ,然后再增大。 据报道 ,由于 Co 元素的原子半径大于 Ni 元素的原子 半径 ,以 Co 元素部分取代 Ni 元素会导致 La-Mg-Ni-Co 合金中主相的晶胞体积增大^[13]。这可能是随着 Co/Ni 的比例在一定范围时 ,合金中出现其他相所 致 ,如在 $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15, 0.$ 25 ρ . 35 ρ . 45) 合金中 ,在 x = 0.35 时 ,合金中出现了 La_2Ni_7 相 ,而其余合金并未出现此合金相。

图 1 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(*x* = 0.15 ρ.25 ρ.35 , 0.45) 合金 XRD 衍射图谱

Fig. 1 XRD patterns of $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}$ ($x = 0.15 \ 0.25 \ 0.35 \ 0.45$) alloys

•: $LaNi_5$, •: $LaNi_2$, **A**: La_2MgNi_9 , *****: La_2Ni_7 .

表 1 $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}$ (*x* = 0. 15, 0. 25, 0. 35, 0. 45) 合金的晶胞参数

Table 1	Lattice parameters of $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}$
(x=0.15)	0.25 0.35 0.45) alloys

+¥ 🗆	+0	晶胞参数 Lattice parameters			
作=茚 Samples	相 Phase	a/b(Å)	c(Å)	晶胞体积 Cell volum (Å ³)	
${\rm La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.25}Co_{0.15}F}$	el _o aNi ₅	5.020	3.987	87.04	
	LaNi ₂ LaMg ₂ Ni ₉	7.091 5.028	7.091 24.300	356.6 532.1	
${\rm La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.15}Co_{0.25}F}$	el _p a _l Ni ₅	5.031	3.995	87.6	
	LaNi ₂ LaMg ₂ Ni ₉	7.101 5.042	7.101 24.300	358.9 535.0	
${\rm La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.05}Co_{0.35}F}$	el _p aNi ₅	5.024	3.993	87.3	
	LaNi ₂ La ₂ Ni ₇ LaMg ₂ Ni ₉	7.111 5.031 5.049	7.111 24.356 24.465	359.6 533.9 540.1	
${\rm La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{2.95}Co_{0.45}F}$	el _o aNi ₅	5.033	3.993	87.6	
	LaNi ₂ LaMg ₂ Ni ₉	7.103 5.041	7.103 24.377	358.4 536.5	

2.2 合金气态储氢性能

从图 2 可知 , $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15 <math>\rho$. 25 ρ . 35 ρ . 45) 合金在温度 303K 下的吸氢 量分别为 1. 29wt% (x = 0.15) ,1. 05 wt % (x = 0. 25) ,1. 39 wt % (x = 0.35) ,1. 01 wt % (x = 0.45) 。 与其他合金相比 ,x = 0. 35 时合金出现 La₂Ni₇ 相 ,常 温下 La₂Ni₇ 的吸氢量比 LaNi₅ 的吸氢量高^[14] 。因 此 ,当 x = 0. 35 时 ,在 La₂Ni₇、LaNi₂、LaNi₅ 以及 La₂MgNi₉ 协同作用下合金的吸氢量最高。

图 2 $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15 \ p.25 \ p.35, 0.45)$ 合金在 303K 下的 P-C-T 曲线

Fig. 2 P-C isotherms of $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15 \ p. 25 \ p. 35 \ p. 45)$ alloys at 303K

----: x = 0.15 ---: x = 0.25 ----: x = 0.35 ----: x = 0.45.

2.3 合金电极充放电性能

图 3 结果显示所有合金电极在 1 ~2 个充放电后 均能充分活化。由表 2 可知 ,合金电极的最大放电容 量分别为 346.7mAh/g(*x* = 0.15) 、320.3mAh/g(*x* = 136 0.25)、363.0mAh/g(x = 0.35)和 313.3mAh/g(x = 0.45),这与 P-C-T 测试结果一致。合金电极的容量 保持率分别为 63.0%(x = 0.15)、65.6%(x = 0.25)、80.2%(x = 0.35)和 75.0%(x = 0.45),随着 Co 含量的增加,合金电极的容量保持率先提高后降 低。通常情况下,引起合金电极容量保持率下降的原 因主要是合金电极表面钝化以及由于晶格膨胀导致 粉化所致^[15]。以 Co 元素替代 Ni 元素引起 LaNi₅相 晶胞体积膨胀率较小,从而抑制了合金的粉化最终有 利于提高合金充放电循环稳定性^[13]。但是,Co 对 Ce₂Ni₇型合金和 AB₅型合金的作用不一致的,Co 能 抑制 Ce₂Ni₇型合金中 LaNi₅ 单元的晶胞体积膨胀,但 对 Ce₂Ni₇型合金中 LaVes 单元不起作用^[16]。因此 Co 含量过多会导致 Ce₂Ni₇型合金中 Laves 晶格膨胀最 终导致粉化,从而引起合金的循环稳定性下降。

图 3 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x=0.15 ρ.25 ρ.35, 0.45) 合金电极充放电循环曲线

Fig. 3 Charge/discharge curves of $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15, 0.25, 0.35, 0.45)$ e-lectrodes

 $---: x = 0.15 \quad --: x = 0.25 \quad --: x = 0.35 \quad --: x = 0.45.$ $= 2 \quad 10 \quad 7r \quad Mg \quad Ni \quad Co \quad Fo \quad X(x=0, 15, 0, 25, 0, 35)$

表 2 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}X(x=0.15 0.25 0.35, 0.45)合金电极的电化学参数

Table 2 Electrochemical parameters of $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}$ (x=0.15 β . 25 β . 35 β . 45) alloys

样品 Samples	C _{max} (mAh /g)	S ₆₅ (%)	I_p (mA/g)	<i>I_L</i> (mA)	HRD ₁₂₀₀ (%)
${\rm La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.25}Co_{0.15}Fe_{0.1}}$	346.7	63.0	1159.0	335.7	58.5
${\rm La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.15}Co_{0.25}Fe_{0.1}}$	320.3	65.6	1209.0	386.8	67.3
$La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.05}Co_{0.35}Fe_{0.1}$	363.0	80.2	980.3	320.2	54.2
${\rm La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{2.95}Co_{0.45}Fe_{0.1}}$	313.3	75.0	411.5	131.6	40.5

2.4 合金电极的动力学特性

由表 2 可知,在放电电流为 1200mA/g 时,合金 电极的高倍率放电性能分别为 58.5%(x = 0.15)、 67.3%(x = 0.25)、54.2%(x = 0.35) 和 40.5%(x= 0.45)。高倍率放电性能是反应贮氢合金电极动力 学性能的一个重要指标,其主要由合金电极表面电荷 传递电阻和氢在合金电极中的扩散速率决定^[17,18]。 由图 4 可知 随着 Co 含量的增加,合金电极的高倍率

Guangxi Sciences , Vol. 19 No. 2 , May 2012

放电性能指标先增大后减小 ,La₀₇Zr₀₁Mg₀₂Ni_{3.15}Co₀₂₅Fe₀₁ 合金电极的高倍率放电性能较好。为进一步说明电 极动力学性能 我们通过对合金电极的极限电流密度 进行测试 测试结果(图5)显示 在阳极扫描过程中, 随着扫描电位的增加,响应电流密度也逐渐增加,然 后出现极限电流密度 I_L,最后合金电极进入钝化区。 极限电流密度反映氢原子在合金体中扩散的快慢。 对于可逆电荷传递反应极限电流密度,从公式^[19]: I_L = 0.4958nFAC₀(αnF)^{1/2}/RTD^{1/2}v^{1/2}(C₀为溶液中氢原子 初始浓度 单位 mol • cm³; D 为氢原子扩散系数; v 为电 - 极极化测试的扫描速率 单位 V・s⁻¹) 可以看出 在测试 条件一致的情况下 合金电极的极化电流密度越大 為 原子的扩散系数越大 氢原子的扩散越容易。从表2可 知 合金电极的极限电流密度 I_L 分别为: 335.7 mA/g(x= 0.15) 386.8 mA/g(x = 0.25) 320.2 mA/g(x = 0.25)0.35) 和 131.6 mA/g (x = 0.45), I, 变化规律与合金电 极的 HRD₁₂₀₀ 变化规律一致 在 x = 0.15~0.35 的合金 中 随着 Co 含量的增加 当 Co 与 Ni 的比例在一个恰当 范围时 在充放电过程中合金电极表面聚集着大

图4 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15 ρ.25 ρ.35, 0.45) 合金电极高倍率放电曲线

Fig. 4 HRD of $\rm La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}($ x = 0.15 , 0.25 $\rho.35$ $\rho.45)$ alloy electrodes

--: x = 0.15 --: x = 0.25 --: x = 0.35 --: x = 0.45.

图 5 $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}$ (x = 0.15 ρ . 25 ρ . 35 , 0.45)的 Tafel 极化曲线

Fig. 5 Tafel curves of $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_{x}Fe_{0.1}$ ($x = 0.15 \ p.25 \ p.35 \ p.45$) alloy electrodes

x = 0.15 x = 0.25 x = 0.35 x = 0.45.

广西科学 2012 年 5 月 第 19 卷第 2 期

量的具有较高电化学活性的 Ni-Co 膜^[20 21] ,导致氢原 子在合金电极表面渗透能力增强 从而提高了氢在合 金电极中的扩散速率,合金电极极限电流密度增大; 然而 随着 Co 元素含量的增加 ,合金中 Ni 元素含量 相应下降 在碱溶液中过量的 Co 与 OH⁻结合生成 Co (OH)2 膜覆盖于合金电极表面,氢原子脱附能力降 低[22] ,导致溶液中氢原子浓度下降从而引起合金极 限电流密度和 HRD 下降。在 La₀₇Zr₀₁Mg₀₂Ni_{34-x}Co_xFe₀₁ (x=0.15 0.25 0.35 0.45) 合金中 适量的 Co 元素 替代 Ni 元素提高了氢原子在合金体中扩散速度 ,从 而提高了合金电极的电化学动力学性能,Co元素含 量过量 具有较高电催化活性的 Ni 元素相应下降 最 终会导致合金的动力学性能下降。合金电极氧化峰 电流密度大小与合金电极表面电荷转移速度有关(图 6) 峰电流密度越大 合金的高倍率放电性能越好^[14]。 合金电极的变化规律与HRD1200 的变化规律一致(表2), 在 x =0.25 时 I, 值较大(1209.0 mA/g)。这可能是 Co/ Ni 比例在一定范围时 / 合金电极表面形成具有较强电催 化作用的 Ni-Co 膜^[20 21] 加快了电荷的转移速度。

图 6 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15 0.25 0.35, 0.45) 合金电极的循环伏安特性曲线

Fig. 6 Cyclic voltammogram of $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}$ Co_xFe_{0.1}(x = 0.15 ρ . 25 ρ . 35 ρ . 45) alloy electrodes

- : x = 0.15 , = 0.25 , x = 0.35 , = 0.45.

3 结论

(1) 合金 La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x = 0.15, 0.25 0.35 0.45) 主要由 LaNi₅、LaNi₂ 以及 La₂MgNi₉ 相组成,在 La₂Ni₇、LaNi₂、LaNi₅ 以及 La₂MgNi₉ 协同 作用下,La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.05}Co_{0.35}Fe_{0.1} 合金的吸氢量 最高。

(2) $La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_{x}Fe_{0.1}$ (*x* = 0.15, 0.25 ρ .35 ρ .45) 合金电极的最大放电容量分别为 346.7mAh/g(*x* = 0.15)、320.3mAh/g(*x* = 0.25)、 363.0mAh/g(*x* = 0.35) 和 313.3mAh/g(*x* = 0.45)。 合金电极的容量保持率分别为 63.0% (*x* = 0.15)、

137

65.6%(x = 0.25)、80.2%(x = 0.35)和75.0%(x = 0.45)。随着 Co 含量的增加,合金电极的容量保持率先提高后降低。以 Co 元素替代 Ni 元素引起 LaNis相晶胞体积膨胀率较小,从而抑制了合金的粉化最终有利于提高合金充放电循环稳定性;但是过量的 Co 导致 Ce₂Ni₇型合金中 Laves 晶格膨胀最终会导致粉化 从而引起合金的循环稳定性下降。

(3) *HRD*、*Ip* 和 *I_L* 测试结果表明, La_{0.7}Zr_{0.1}Mg_{0.2}Ni_{3.4-x}Co_xFe_{0.1}(x=0.15 p. 25 p. 35 p.
45) 合金在 x = 0.25 时合金电极的电化学动力学性 能较好。

参考文献:

- [1] Kohno T , Yoshida H , Kanda M. Hydrogen storage properties of La(Ni_{0.9} M_{0.1}) ₃ alloys [J]. Journal of Alloys and Compounds 2004 363(1~2): 254-257.
- [2] Tang R H ,Lu Q Y ,Xiao F M ,et al. Study on nanocrystalline rare earth Mg-based system hydrogen storage alloys with AB₃-type [J]. Journal of Rare Earths ,2006 ,24(1): 343-346.
- [3] Wang D ,Luo Y ,Yan R ,et al. Phase structure and electrochemical properties of La_{0.67} Mg_{0.33}Ni_{3.0-x}-Co_x(x = 0.0 β.
 25 β.5 β.75) hydrogen storage alloys [J]. Journal of Alloys and Compounds 2006 A13(1 ~ 2): 193-197.
- [4] Zhang Y H ,Dong X P Zhao D L ,et al. Influences of stoichiometric ratio B/A on structures and electrochemical behaviors of La_{0.75} Mg_{0.25} Ni_{3.5} M_x(M = Ni ,Co; x = 0 ~ 0.6) hydrogen storage alloys [J]. Transactions of Nonferrous Metals Society of China 2008 ,18(4): 857-864.
- [5] Liu Y X ,Xu L Q Jiang W Q et al. Effect of substituting Al for Co on the hydrogen – storage performance of La_{0.7} Mg_{0.3} Ni_{2.6} Al_x Co_{0.5-x}(x = 0.0 ~ 0.3) alloys [J]. International Journal of Hydrogen Energy 2009 34(7): 2986 -2991.
- [6] Liu Y F Pan H G ,Gao M X et al. The effect of Mn substitution for Ni on the structural and electrochemical properties of La_{0.7}Mg_{0.3}Ni_{2.55-x}Co_{0.45}Mn_xhydrogen storage electrode alloys [J]. International Journal of Hydrogen Energy , 2004 29(3):297-305.
- [7] Dong Z W , Wu Y M , Ma L Q , et al. Electrochemical hydrogen storage properties of non – stoichiometric La_{0.7} Mg_{0.3-x}Ca_xNi_{2.8} Co_{0.5}(x = 0 ~ 0.10) electrode alloys
 [J]. Journal of Alloys and Compounds ,2011 ,509 (17) : 5280-5284.
- [8] Pan H G ,Ma S ,Shen J ,et al. Effect of the substitution of PR for LA on the microstructure and electrochemical properties of hydrogen storage electrode alloys [J]. International Journal of Hydrogen Energy 2007 ,32(14): 2949-2956.
- [9] Zhang Y H , Rafi U D , Li B W et al. Influence of the substituting Ni with Fe on the cycle stabilities of as-cast and asquenched La_{0.7} Mg_{0.3} Co_{0.45} Ni_{2.55-x} Fe_x(x = 0 ~ 0.4) electrode alloys [J]. Materials Characterization ,2010 ,61(3): 305-311.
- [10] Pan H G , Yue Y J , Gao M X , et al. The effect of substitu-

tion of Zr for La on the electrochemical properties of $La_{0.7-x}Zr_xMg_{0.3}Ni_{2.45}Mn_{0.1}Co_{0.75}Al_{0.2}$ hydrogen storage electrode alloys [J]. Journal of Alloys and Compounds , 2005 397(1 ~ 2): 269–275.

- [11] Shen X Q ,Chen Y G ,Tao M D ,et al. The structure and high-temperature (333K) electrochemical performance of La_{0.8-x}Ce_xMg_{0.2}Ni_{3.5}(x = 0.00 ~ 0.20) hydrogen storage alloys [J]. International Journal of Hydrogen Energy, 2009 34(8): 3395-3403.
- [12] Pan H G Jin Q W ,Gao M X ,et al. An electrochemical study of La_{0.4} Ce_{0.3} Mg_{0.3} Ni_{2.975-x} Mn_x Co_{0.525}(x = 0.1 ~ 0. 4) hydrogen storage alloys [J]. Journal of Alloys and Compounds 2004 376(1~2):196-204.
- [13] Dong X P Zhang Y H Lü F X et al. Investigation on microstructures and electrochemical performances of hydrogen storage alloys [J]. International Journal of Hydrogen Energy 2007 32(18): 4949-4956.
- [14] Li Y ,Han S M ,Li J H ,et al. The effect of Nd content on the electrochemical properties of low-Co La – Mg – Nibased hydrogen storage alloys [J]. Journal of Alloys and Compounds 2008 458(1~2):357-362.
- [15] Willems J J G ,Buschow K H J. From permanent magnets to rechargeable hydride electrodes [J]. Journal of the Less Common Metals ,1987 ,129(0):13-30.
- [16] Zhang F L Juo Y C Sun K et al. Effect of Co content on the structure and electrochemical properties of La_{1.5} Mg_{0.5}Ni_{7-x}Co_x(x = 0, 1.2, 1.8) hydrogen storage alloys [J]. Journal of Alloys and Compounds ,2006, 424 (1 ~2): 218-224.
- [17] Iwakura C ,Matsuoka M ,Asai K ,et al. Surface modification of metal hydride negative electrodes and their charge / discharge performance [J]. Journal of Power Sources , 1992 ,38(3): 335-343.
- [18] Liu Y F ,Pan H G ,Gao M X ,et al. Investigation on the characteristics of La_{0.7} Mg_{0.3} Ni_{2.65} Mn_{0.1} Co_{0.75+x}(x = 0.00 ~ 0.85) metal hydride electrode alloys for Ni/MH batteries: Part I: Phase structures and hydrogen storage [J]. Journal of Alloys and Compounds 2005 387(1~2): 147–153.
- [19] Geng M , Feng F , Sebastian P J , et al. Charge transfer and mass transfer reactions in the metal hydride electrode [J]. International Journal of Hydrogen Energy ,2001 ,26(2): 165-169.
- [20] Choquette Y ,Ménard H ,Brossard L. Electrocatalytic performance of composite-coated electrodes for alkaline water electrolysis [J]. International Journal of Hydrogen Energy , 1990 ,15(1):21-26.
- [21] Zhao X L Zhang Y H JLi B W ,et al. Investigation on microstructures and electrochemical performances of the La_{0.75} Mg_{0.25} Ni_{2.5} Co_x(x = 0 ~ 1.0) hydrogen storage alloys [J]. Journal of Alloys and Compounds ,2008 ,454 (1 ~ 2) : 437-441.
- [22] Liu Y F ,Pan H G ,Gao M X ,et al. Investigation on the characteristics of La_{0.7} Mg_{0.3} Ni_{2.65} Mn_{0.1} Co_{0.75+x} (x = 0.00 0.85) metal hydride electrode alloys for Ni/MH batteries Part II: Electrochemical performances [J]. Journal of Alloys and Compounds 2005 388(1): 109-117.

(责任编辑:邓大玉)